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SECTION 1 , :"

INTRODUCTION AND OVERVIEW

An important quality attribute of a computer system

is the degree to which it can be depended upon to perform

its intended function in the specified environment.

Evaluation and prediction of this attribute has

concerned computer designers and users from the early

days of their evolution. Until the late sixties, the

attention was almost solely on the performance of hard-

ware aspects of the system. In the early seventies, soft-

ware became the center of attention due to a continuing

increase in the ratio of software to hardware costs, in

both the production and the operational phases.

The performance of a software system is dependent

on the tools and methodologies used during its develop-

ment, and an important measure of performance is the

nature and frequency of software errors. .". -

This report is primarily concerned with the develop-

ment of stochastic models for describinq the software error

occurrence phenomenon and determining software reliability.

A description of software errors and their sources is

qiven in Section 1.1 and an error classification scheme
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is described in Section 1.2. The notion of software

.':. . a-

reliability is discussed in Section 1.3. Current

suggested approaches for enhancing software reliability

are given in Section 1.4. A description of software

reliability models reported in the literature is given

in Section 1.5.

A non-homogeneous Poisson process (NHPP) model

based on an exponentially decaying error occurrence

rate is developed in Section 2. Many useful software

performance measures are developed and several software

failure data sets are analyzed to show the applicability

and usefulness of this model.

In Section 3, another NHPP model is proposed which lot

can be used to model both the increasing and the decreas-

ing failure rates during the software integration testing

phase.

The problem of when to stop testing and start using

software is discussed in Section 4. Various useful

I'M scenarios are considered and optimum release time poli-

cies are developed. The results are illustrated via

numerical examples.

A related problem of modelling the total hardware-

software system is addressed in Appendix A. This task

• V i
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was not a part of the research work under the reference

contract and the results are reported here as they are

considered useful for people interested in software re-

liability modelling.
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1.1 SOFTWARE ERRORS AND THEIR SOURCES

Software (also called program) is essentially an

instrument for transforming a discrete set of inputs

into a discrete set of outputs (see Figure 1.1). It

comprises of a set of coded statements whose function

may basically be one of the followina:

1. Evaluate an expression and store the result

in a temporary or permanent location.

2. Decide which statement to execute next.

3. Perform input/output operations.

Since, to a large extent software is produced by humans,

the finished software product is often imperfect. It is

imperfect in the sense that a discrepancy exists between

what the software can do versus what the user or the com-

puting environment wants it to do, The computing en-

vironment refers to the physical machine, operating system,

compiler and translators, utilities, etc. These dis-0m
crepancies are what we call software errors (see Figure

1.2). Basically, the software errors can be attributed

to the following:

1. Ignorance of the user requirements;

2. Ignorance of the rules of the computing

environment; and

1-4

b. • . . . . . .



1,.-

INPUT DOMAINg I

OUTPUT SPACE, 0 .

FIG. 1.1. FUNCTIONAL VIEW OF SOFTWARE
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IN PUT

FIG. 1.2, SOFTWARE ERROR

V Se
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3. Poor communication of software requirements

between the user and the programmer or poor

documentation of the software by the programmer.

The fact of the matter is even if we know that soft-

ware contains errors, we may not know with certainty the

exact identity of these errors.

Currently, there are two major paths one can follow

to expose software errors:

1. Program proving, and

2. Program testing.

Program proving is more formal and mathematical while

program testing is more practical and still remains to

be heuristic in its approach. The approach in program

proving is the construction of a finite sequence of logi-

cal statements ending in the statement (.usually the output

specification statement) to be proved. Each of the logi-

cal statements is an axiom or is a statement derived from

earlier statements by the application of an inference

rule. Program proving making use of inference rules is

known as the Inductive Assertion Method. This method was

mainly popularized by Floyd, Hoare, Dijkstra and recently

Reynolds. Other work on program proving is the work on

the Symbolic Execution Method. This method is the basis

of some automatic program verifiers. Despite the formalism "

1-7
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and mathematical exactness of program proving, it is

still an imperfect tool for verifying program correct-

ness. Gerhart and Yelowitz [GER 761 showed several

programs which were proven to be correct but still con-

tained errors. The errors were due to failures

in defining what exactly to prove and were not failures

of the mechanics of the proof itself.

Program testing is the symbolic or physical execu-

tion of a set of test cases with the intent of exposing

embedded errors (if any) in the program. Like program

proving, program testing remains an imperfect tool for

verifying program correctness. A given testing strategy

is good fot exposing certain kindsof errors but not all

possible kinds of errors in a program. An advantage of

testing is that it provides accurate information about a

program's actual behavior in its actual computing environ-
ment; proving is limited to conclusions about the program's

behavior in a postulated environment.

Neither proving nor testing can, in practice, guaran-

tee complete confidence on the correctness of programs.

Each has its pluses and minuses. They should not be

viewed as competing tools. They are, in fact, complementary

methods for decreasing the likelihood of program failure

[GOO 77].
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1.2 SOFTWARE ERROR CLASSIFICATION

A systematic study of software errors in A programi

requires knowing what specifically these errors are and

knowing which tool(s) to use to expose particular types

of software errors. Software errors can be grouped as

syntax, semantic, runtime, specification and performance

errors.

1.2.1 Syntax Errors .

These errors are due to discrepancies between the

program code and the syntax rules governing the parser

or lexical analyzer of a program translator, These are

the easiest errors to detect. They can be detected by

visual inspection of the code or can be detected mechani-

cally during the program compilation process. Experienced

programmers rarely commit syntax errors.

1.2.2 Semantic Errors

These errors are due to discrepancies between the

program code and what the semantic analyzer of the computing

environment accepts. Among the popular kinds of semantic

errors are typechecking errors and implementation restric-

tion errors. Again, they may be detected by the semantic

analyzer of a program translator or by visual inspection.
1-
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Syntax and semantic errors are detected during the

compilation stage of a program. A program having syntax - 2
and/or semantic errors cannot be executed. Syntax and

semantic errors are mainly due to the ignorance/negligence

on the part of the programmer about the restrictions and

limitations of the language (s)he is using.

1.2.3 Runtime Errors

As the name implies, runtime errors occur during

the actural running of a program. They may be further

classified into three categories:

Domain errors

A domain error occurs whenever the value of a

program variable exceeds its declared range or exceeds

the physical limits of the hardware representing the

variable. The declared range of a variable is done im-

plicitly or explicitly. FORTRAN, for example, assigns 0

types to variables based on the variable name or based

on a declaration statement. PASCAL requires all variables

to be explicitly declared in a declaration statement.

PASCAL has facilities to declare ranges by enumeration

and/or subsets of numeric dorains.

Some program translators produce runtime code for

checking certain types of domain errors. Some have built-

in recovery features for domain errors (e.g. PL/l, COBOL)

and others (e.g. FORTRAN) simply abort execution upon

the occurrence of a domain error. Certain compilers, like

1-10



PASCAL, automatically check for values outside a declared

range.

Domain errors are a serious matter because

a) program execution is aborted, and/or

b) program results are incorrect.

Execution abortion may be fatal especially in real-time

systems. Despite their seriousness, domain errors have

never been formally and extensively studied in the litera-

ture. This is because detection of domain errors can be

very difficult. They require exact specification of the

ranges of the input variables. Also, the test values

required to expose these errors may occur at the input

domain's boundary or inside the input domain itself.

Computational errors

Computational errors, sometimes known as logic errors,

result whenever the program results in an incorrect output.

The incorrect output may be due to a wrong formula, an

incorrect control flow, assignment to a wrong variable,
AV

incorrect parameter passing, etc.

It is not possible to generate runtime code to de-

tect computational errors during program execution. This

is because computational errors are really discrepancies

between the program's output and the program's specifica-

tions.
W4
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Computational errors due to incorrect program con-

structs and statements may be detected by any of the F

structure dependent or structure independent testing

techniques. However, none of these tools can guarantee

total absence of these types of computational errors in

a program. Computational errors due to missing program

constructs and statements may be detected by any of the

structure independent testing techniques. Again, none

of these tools can guarantee total absence of computational

errors due to missing paths.

Non-Termination errors

Non-termination error is simply the failure of a

program to terminate in finite time without outside inter-

vention. The most common cause of non-termination errors

is when the program runs into an infinite loop. Non-

termination can also occur if a set of concurrent programs

falls into a dead lock.

Infinite loops are detected by simply executing

each of the loops in a program. However, this strategy

may not guarantee total absence of infinite loops. Some

infinite loops may only occur if certain program variables

achieve certain values. Program proving may also be used

on certain programs to expose infinite loops. The problem

of program non-termination in general is still an unsolved

problem.
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1.2.4 Specification Errors

Specification errors result whenever there exists a

discrepancy between the statement of specifications and

the statement of user requirements. A requirements error

exists whenever there is a discrepancy between the state-

ment of user requirements and the real user requirements.

Presently, detection of specification errors such as;

1. Incomplete specifications,

2. Inconsistent specifications, and

3. Ambiguous specifications,

remains an informal process. This is mainly due to the

nonexistence of a specification language powerful enough

to translate the user requirements into clear, complete

and consistent terms.

A testing tool to detect specification errors is

yet to be developed.

1.2.5 Performance Errors

Performance errors exist whenever a discrepancy

exists between the actual performance (efficiency) of the

programs and its desired or specified performance. Program

performance may be measured in a number of ways;

1. Response time

2. Elapsed time

3. Memory space usage

4. Working set requirement, etc.
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The actual measurement of the above measures of

program performance can be a very difficult process.

Program complexity theory tries to estimate bounds on

the running time of certain proqram algorithms. Statis-

tical analysis and simulation can also be employed to

estimate the above performance variables. However, use

of these tools can be very expensive and time consuming.

A performance testing tool that is economical (time-

wise and costwise) to use is yet to be developed.

The most expensive kind of software errors to elimi-

nate are those which are not discovered until late in the

software development, such as when the software becomes

operational. These are known as persistent software errors. "

Glass [GLA8I] reported that persistent software errors are

mostly due to the failure of the problem solution (i.e. the .

procraml to match the complexity of the problem to be

solved (i.e. the user requirements.. Examples of such

errors are computational errors due to missina or insuffi-

cient predicates and failure to reset a variable to some 0

baseline value after its use in a functional logic segment.

The solution to this software problem is beyond the current

state-of-the-art.
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1.3 SOFTWARE RELIABILITY

There are a number of conflicting views as to what

software reliability really is and how it should be quanti-

fied. The conflict arises because of the disagreement in

the basic definition of the term "software reliability".

Software reliability in the view of some people, especially

the computer science purists, should be closely tied to the

correctness of software. They argue that an incorrect

software (i.e., a software still containing errors) is

doomed to fail sooner or later and thus its reliability

should be zero (0). Once the software has been freed of

all errors, then its reliability becomes one (1). On the

other hand, software reliability, as viewed by many engi-

neers, statisticians, and practitioners, should be closely tied

to the concept of "probabilistic reliability". These

groups of people argue that many programs used in the

real world are known to still contain errors and yet

they are executed day after day without occurrences of

failures. Software reliability, they believe, should

be viewed as the probability that a software system will

operate without a failure for a specified (mission) time.

One way to resolve this conflict is to look back ...... I
at the original problem in the real world and ask our-

selves the question: "Why do we need to know software

reliability?"...
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The original real world problem, in very simple terms,

is as follows:

Develop software that will satisfy the user's require-

ments in the most efficient (in both time and money sense)

way possible.

The solution to this problem turns out to be very

difficult basically because of the following facts;

1. Real world software is large and complex.

2, Users are not always 100 percent certain

about their requirements,

3. Resources (time and money) allocated for soft-

ware development are always limited.

Even if we know that we only need: say, 2000 test cases to run

for exposure all possible embedded errors in a software, chances

are that, in the real world, we may not have enough time

and money to perform this exhaustive test. As more and

more errors are uncovered by our testing or correctness

verification process, the additional cost of exposing the

other remaining errors rises very fast. Thus, beyond 0

a point it is almost practically useless to continue

testinq to achieve 100 percent correctness. This explains

the reason why most all software systems in public and

private use still have embedded errors.
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If we adopt the point of view of a computer science

purist, then almost all software systems in use (including

those that are accepted as very reliable and useful by their

users) have zero reliability. Since everything now has

zero reliability, the value or usefulness of the software

reliability, concept is lost.

The reason why people introduced the concept of soft-

ware reliability (or hardware reliability for that matter)

is to have a useful measure that may help us in dealing

with the original real world software (hardware) problem.

This measure is useful in planning and controlling addition-

al resources (time and money) for enhancing the reliability

of a software. It is also a useful measure for giving the

user confidence about the software quality.

Should we, then, adopt the hardware based concept

of software reliability? One answer to this question at

this point in time is yes, but with extreme care. We

should be careful because there are inherent differences - -

between software and hardware. Hardware exhibits mixtures

of decreasing and increasing failure rates. The decreasing .

failure rate is due to the fact that as use time on the

hardware system accumulates, more and more errors (most

probably design errors) are encountered and fixed. The

increasing failure rate is due primarily to hardware component .

1-17
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wearout. There is no such thing as wearout in software.

It is true that software may become obsolete because of

changes in the user and computing environment but once we

modify software to reflect these changes, then we are no

longer talking of the same software but an enhanced or

modified version. Like hardware, software exhibits a de-

creasing failure rate as the usage time on the system

accumulates and errors (due to design and coding) are fixed.

Thus, a hardware-type approach to software reliability should

be done only in appropriate environments.

Suppose we declare that the reliability of a given

software is 0.95. What does this number exactly mean?

Following the probabilistic point of view, this may mean

any one of the following:

1. If we execute the software several times, 95

percent of the time it will give correct

results.

2. We are 95 percent confident that the software

will give correct results when executed.

The first interpretation is the so-called frequency inter-

pretation and the second is the so-called subjective in-

terpretation. Littlewood's contention [LIT80] is that in

the absence of a "scientific" verifiable meaning for the

number 0.95, the only reasonable interpretation is the sub-

* jective interpretation.
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The only problem we see with this number is its possible

inconsistency. A software may have been declared 95 percent

reliable by the developer but may have a different per-

ceived reliability by the user and probably a different

percieved reliability by another user. A very simple

example will illustrate this point. Suppose a software

is composed of 100 modules. Because of practical considera-

tions, the software developer stops testing after 90 modules.

He then declares the reliability of the system as 90 percent.

A user buys the system and happens to use in his particular

application some modules (or maybe program paths) which

have not been tested. As a result, 50 percent of the time,

the user gets incorrect results. His perceived reliability

of the system is therefore 50 percent. Another user might

use a different mixture of untested modules (program paths)

and might get a different number for the reliability measure.

The basic question is: What is the true reliability of

the software?

The only way to resolve this question, we feel, is

to further qualify or condition our software reliability

measure. Ultimately, what is more important is that the

user gets his correct results from the software. Thus,

that user should be more concerned about a reliability

measure conditioned with respect to his requirements. The

software developer should be concerned with a reliability

measure conditioned with respect to the intended specifica-
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tions of the system. We should remember that the purpose

Qf the reliability measure is to help in planning and con-

trollinq the production of software and nothing more. We

may pool all the users into one big user (for example, user

of an operating system software) and come up with an average

reliability measure. Still, this number may not match the

developer's measured reliability. If we let R[Slr] mean

the reliability of the software system S with respect to

requirements r, then in general, we have:

R[Sjuser requirements] $ R[Sideveloper requirements]
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1.4 APPROACHES FOR ENHANCING SOFTWARE RELIABILITY -

Consider the concept of software reliability based

on the following definition [MYE76]:

Software reliability is the probability that the --

software will execute for a particular period of
time without a failure, weighted by the cost to
the user of each failure encountered.

This definition is not necessarily based on the

actual number of errors residing within the software system

but is based on the impact that the errors have on the users.

For example, a single error in a space shuttle control soft-

ware is much more important than several errors in a matrix

inversion software system which cause only "trivial"

failures. Certainly, a software system which does not

contain a serious error but has many trivial errors would

generally be considered much more reliable than a system

which does not contain the trivial errors but contains

the single serious error.

The reliability of a software system is generally

expected to grow as it evolves from the design stage to

the coding stage and testing stages and down to the opera-

tional and maintenance stage. Modern software engineering

practice advocates that testing should be performed as

early as the design stage. Software errors detected in

the design stage are easier and less expensive to remove

than those detected during the testing or operational
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stage. We also know that modern software design methodolo-

gies help in the likelihood of not committing errors in the

design stage. Redundant programming, that is, implementing

a software in different ways, is sometimes used to enhance

software reliability. Fault tolerance programming is

another popular technique. However, testing still remains

the most commonly used approach to enhancing software re-

liability.

Testing for the presence of errors is usually done

in stages [CHA78];

1. First stage is the testing done at the module

level by the implementing programmer.

2. Modules are then integrated forming a subsystem

or the whole system is tested. The system is then

tested. This is also known as alpha testing.

3. The software is then given to several "friendly S

users" who are willing to use the software in an

operational environment and the problems encountered

with the software are reported. This is known as 0

beta testing.

4. Finally, software is released to all users and

6 corrections are issued against it as problems are w

reported by the users.

This overall testing process coupled with the design

testing process would, hopefully, result in an enhanced 0
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reliability of the software system. Can the reliability

of the software decrease as a result of the software

correction (debugging) process? The answer is yes. This

occurs when additional errors are accidentally injected

into the system while removing some other errors.

Hopefully, with the use of better design methodologies,

better documentation techniques, better programming languages,

better testing strategies and better software management

techniques, the likelihood of software reliability decreasing

as the system evolves from the design to the operational

stage will become less.
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1.5 SOFTWARE RELIABILITY MODELS

Many studies have been undertaken during the last

decade to analyze and study software failure data with

the objective of finding ways that will lead to improved

software performance. Such studies can be classified

into one (Dr bothl of two categories. In the first cate-

gory, the emphasis is on the analysis of software failure

data collected from small or large projects during develop- - 0

ment and/or operational phases. Studies in the second

category are primarily aimed at the development of analyti-

cal models which are then used to obtain the reliability

and other quantitative measures of software performance.

The analytical modelling work can then be classi-

fied into the following three major categories. The first 0

one emphasizes the stochastic nature of software failures,

while the second and the third use combinatorial analysis to

provide measures of software reliability, t

1. Failure Rate Based Models.

2. Combinatorial or Error-Seeding Models.

3. Input Domain Based Models.
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1. Failure (Hazard) Rate Based Models: The times

between indigenous errors or the number of indige-

nous errors observed during testing are used to

estimate the shape of the hypothesized hazard

function, From the estimated hazard function,

one can estimate the number of errors remaining

in the software, the mean-time-to-failure (MTTF)

or the reliability of the software.

2. Combinatorial or Error Seeding Models: A

known number of errors are seeded (planted). in

the program, After testing, the number of ex-

posed seeded and indigenous errors are counted.

Using combinatorics and maximum likelihood esti-

mation, estimates of the number of

indigenous errors in the program or the relia-

bility of the software. can be estimated.

3, Input Domain Based Models: The basic approach

here is to generate a set of test cases from an "

input (operational) distribution. Because of the

difficulty in estimating the input distribution,

the various models in this group partition the

input domain into a set of equivalence classes. An

equivalence class is usually associated with a pro-

gram path. The reliability measure is calculatcd W

from the observed failures after execution (sym-

bolic or physical) of the sampled test cases.
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1.5.1 Failure Rate Based Models

Failure rate based models can be further classified

as shown in Table 1.1.

The failure-rate (also known as hazard rate) function

z~t) is defined as the conditional probability that an error

is exposed in the interval t to t+At, given that the error

did not occur prior to time t [MYE76]. The reliability

function R(t) is the probability that no errors will occur

from time zero to time t, Reliability theory tells us that

z~tl and R(t). are related in the following form:

z(t) = [-dR(t)/dt]/R(t)

or t
fR(t) = exp(- J z(x)dx)

0

Also, mean-time-to-failute (MTTF) =i/z(tl,

Estimation of reliability, once the failure rate

function z(t) is known is thus straightforward. The

failure rate based models given in Table 1.1 basically

differ in their assumption on the failure rate function

z(t). Table 1.2 below displays these differences;

w
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TABLE 1.1 TABLE OF FAILURE-RATED BASED SOFTWARE
RELIABILITY MODELS

&

Classical Bayesian

De-Eutrophication Process Littlewood Model
Model of Jelinski-Moranda [LIT80]
[JEL72]

Linear Function Testing Goel-Okumoto
Time Model of Schick and Imperfect Debugging
Wolverton ISCH78] Model IGOE79 I

Error Count Parabolic Function Testing
Based Failure Time Model of Schick and
Rate Models Wolverton [SCH78]

Shooman Model 1SH072]

Shooman-Natarajan Model
.[DUN82.
Execution Time Model of
Musa IMUS75]

Non-Homogeneous Poisson
Process Model of Goel "
Okumoto [GOE79]

Non-Error Geometric De-Eutrophica- Littlewood and
Count Based tion Process Model of Verrall Model
Failure Rate Moranda [MOR75] [LIT73]
Models Geometric Poisson Process Thompson G Chelson

Model of Moranda [MOR75] Model [DUN82]

Wagoner Model [DUN82]
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TABLE 1.2 SUMMARY OF FAILURE-RATE BASED MODELS

Model Assumption on z(t)

De-Eutrophication The software failure occurrence rate at
Process Model any time t is assumed proportional to

the number of errors remaining in the
software, i.e., for the time interval
between (i-l)st and ith failure, we
have Z(X.1 = *[N- (i-l)]. N is the
initial rror content,

Schick-Wolverton Failure rate is assumed proportional
Linear Failure Rate to number of remaining errors in soft-
Model ware and test time, For ith interval,zcxi) - +iN -c.i-1).lx .

Schick-Wolverton Failure rate is assumed proportional to
Parabolic Failure- residual errors and a parabolic function
Rate Model of test time, or ith interval, Z(Xi)=

*[N- Ci-l)](-ax i + bxi + c) a,b,c >

Shooman Model Z(t) = K[ET/IT - J p(x)dxj where:
K : proportionality constant

ET: total I errors t

IT: total # instructions (object code)

T: debugging time

p(x): number of errors/total I instruc-
tion s/x debugging time.TQ

p(x)dx: total # of errors per IT0-removed during time units

of debugging time.
Su

Shooman-Natarajan Z(t) = Kc (t) where:
Model r

Cr: number of remaining software
faults.

K : constant of proportionality
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Execution Time I. z(T) KfNQ Kfn(T) where: -
Model of Musa

K : error exposure ratio
f:: linear execution frequency of

program
NO: initial error content
T : CPU time utilized in operating

the program
n(T): net number of errors

corrected during T,

11 If dn(t)/dt= error exposure rate,
then Z(71 = KfN0 exp[-Kf'r]

Non-Homogeneous Assumes that the error detection rate
Poisson Process X(t) is time dependent and is given by:
(NHPP) Model of X(t) = abexp[-bt] where:
Goel & Okumoto

a: expected number of errors to
be eventually detected

b. error detection rate per error

Geometric De- Assume that the steps representing the
Eutrophication decrease in failure rate between
Process Model of adjacent failure time are geometri-
Moranda cally varying.

Z(Xi) = DK where:

D: initial error detection rate
DK: error detection rate after the
, occurrence of the 1st error

DOi1: error detection rate after the
occurrence of the ith error.

Geometric Poisson A superposition of a geometric De-
Process Model of Eutrophication process and a Poisson
Moranda process with parameter 0,

Z(X)= DK +0

Wagoner (Weibull) z(t) = (-I where:
Model a a

a : scale parameter
A ; parameter to squeeze or stretch

the shape of the distribution
t : CPU time units
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Goel-Okumoto The form of Z(t) is not obvious:
Imperfect Debugging however, the reliability function
Model between the (k-l)st and Kth failure is;

K-I
RE(.x) = 0(K-l)pK 'llQJ exp[-(N-K+j+l)Ix

where:
P; Prob {of successful correction

of a defect}
Q: Prob (of imperfect debugging}= 1-P
A: Parameter of the exponential

distributions governing the time
between failures

N: Estimated initial number of defects.

Thompson Chelson z(t) = X but X is treated as a random

Model variablk with a gamma density function
T0 (ATo)0T(Ko+ IT exp[- T ]

where:
K0; observed failures

T : testing time for K0

K0 and T essentially represent
pre ious testing experience.

Littlewood and zCtl = x but X is treated as a random .

Verrall Model variable distributed as Gamma with

shape parameter a and scale parameter
T(i), an increasing function of i.

Littlewood Model Z(Xi) = Xi and Xi is distributed as
1 1 1 i-l

gamma (.(N-i+l)a, 8 +  t.), where: "&
N-i~l; number of errors remaining -

when (.i-1) failures have
occurred,

t: execution time from (j-l)st
failure to the jth failure.

a,8: parameters of gamma distribution. W I
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As noted above a number of assumptions are made in

the development of failure-rate models. A discussion of

these assumptions is provided in the following paragraphs

to point out the dangers in the use of these models when

the assumptions are not satisfied. It should, however, be

noted that some models could be robust to departures from

many of these assumptions and can be used for reliability

assessment purposes.

1. All the models described above assume that any error

detected is immediately corrected. The correction

process does not alter the program. All corrections

remove the detected error (except the IDM model) and

do not result in the introduction of new errors. It

is not hard to accept that correction of a detected -

error in a program may result in new errors in the

program. Goel and Okumoto [GOE79] tried to address

the second limitation above by formulating the Im-

perfect Debugging Method (IDM). IDM assumes

that the number of errors in the system at time t is

governed by a Markov process. Time between transitions

is exponentially distributed with rates dependent on

the current error content of the program. The state

transitions are guverned by the probability of imperfect

debugging. No one has yet addressed the problem in which

the debugging process introduces new errors into the

software.
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2. Models such as those by Jelinski and Moranda, Musa,

and Shooman assume that the software failure rate

is a constant multiple of the number of remaining

errors. This is the same as saying that each error

in a given time interval (between failures) has the

same chance of being detected. This, obviously, is

not always true since errors that happen to reside

in a portion of the code that is frequently executed

by the user (or tested by the user) have a higher AU

probability of being detected. Errors which reside

in the unreachable (or never used) portion of the

code will obviously have a lower (or zero) probability

of being detected. Moranda tried to address this

problem by reformulating the De-Eutrophication model

into the Geometric De-Eutrophication Model and later

to the Geometric Poisson Model. In these variations,

the failure rate between adjacent failure intervals

is geometrically varying. 0

The NHPP model by Goel and Okumoto also tried to

alleviate these problems (i.e. problems with the con-

stant failure rate models) by postulating a time de-

pendent error detection rate model. Littlewood is more

ambitious in trying to address this problem. He postu-

lated a model which assumes that each remaining error

in the program has a different rate of occurrence. The

failure rate of the overall program is then just the sum

of the individual error's rate of occurrence.

1-32



3. The Schick-Wolverton models happen to model a process

where there is an increasing failure rate between fail- - u

ures. This may be a ridiculous assumption if we argue

that software does not wear out. But there can be

cases where the software failure rate might in fact in-

crease and this may be attributed to the increased

intensity of testing. This phenomenon is usually ob-

served during the early stages of the software develop-

ment cycle.

4. Basing the time between failures in terms of execution

(CPU) time, as was assumed by Musa, Littlewood and .

Wagoner, may sometimes be unrealistic. An increase in

accumulated time between two adjacent failures may not

necessarily mean that the software has less and less

number of errors or, putting it equivalently, that the

software's reliability is improving. A very simple

example will illustrate this point. Consider a program

containing only a single error. The same copy of the

program is given to two debuggers. One debugger spends

a lot of time running and re-running the program (which

can be very tempting to do on on-line and timesharing

systems) trying to uncover the error. The second de-

bugger, on the other hand, spends a lot of time analyzing

the program before even attempting to make a test run.

Suppose both debuggers are successful in finding the

error. What is the resulting reliability of the software?
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Execution time theory says that since the CPU time

between failures of the first software is larger than

that of the second software, then the first software

is more reliable. Of course we know that this is not

true since both software have the same reliability.

Another example where execution time may be misleading

is when a selected subset of the program is executed

repeatedly. While the execution time is accumulating

the test coverage is not and this will lead to an -

incorrect assessment of reliability. What is the

most appropriate time unit to use for interfailure

times is still a controversal topic.

5. What about the assumption of independence of inter-

failure times? Is this a realistic assumption? Chances

are it is not. The testing process that is used to un-

cover errors is usually not a random process. The time

to the next failure may very well depend on the nature

and time to failure of the previous error. If the pre-

vious error was a very critical one, then we might decide

to intensify the testing process and look for more critical 0"g
errors. This intensification in the testing process may

mean a shorter time to the next failure than what might

have happened if the testing intensity were maintained at
U

normal levels.

6. Most of the models require time between failure data to

estimate reliability. There can be cases when the mean
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time between failure is infinite; as such, these

models become useless. The mean time between failures

can be infinite if the user of the software has re-

quirements that would only traverse the error free

paths of the program.

7. Basing the reliability of the software on the remaining

number of errors can also sometimes be ridiculous. A

user does not really care whether a software has a

certain number of remaining errors. As long as all .. "

his requirements are met correctly by the software,

then as far as the user is concerned, the software is

100 percent reliable. Littlewood [LITB0] argued that

a program with two bugs in little exercised portions

of the code can be more reliable than a program with

only one but frequently encountered bug.

8. All the models implicitly assume that the testing

process, which generated the estimate for the failure

rate, will be the same as the operating environment.

This again is not true. A reliability measure

conditioned on the user requirements rather than a

simple unconditioned software reliability measure

would be more realistic.

9. Some models assume that software reliability is time-

dependent. Most software fail not because of the

length of time it has been in use but fail because

of the nature of the input to which it is subjected.

Some software like real time control software or
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operating systems show an illusion of failing with

time-of-use because they are used almost continuously.

In those environments, the time-dependence assumption

may be valid.

10. Perhaps the most fundamental assumption is the treat-

ment of the software as a black box. At least some

software reliability models should take into consider-

ation software characteristics and the characteristics

of the software development process in addition to

the failure times and the number of remaining errors.

-- i

IP
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l..&.2 Combinatorial or Error-Seeding Models

A number of combinatorial models have been proposed

but the most popular (and most basic) is Mill's Hypergeo-

metric Model. This model requires that a number of known

errors be randomly inserted (seeded) in the program to be

tested. The program is then tested for some amount of . i

time. The number of original indigenous errors can be

estimated from the numbers of indigenous and seeded errors

uncovered during the test by using the hypergeometric dis-

tribution.

Let

no = number of seeded errors0I
K = number of seeded errors detected during testing

N = total number of indigenous errors

r number of indigenous errors detected during testing

We then have
n N-n

P[K seeded errors in r detected (k) r-k_
indigenous errors] (N)

n(P

MLE for N = nr

A variant of the above model is the so-called Binomial

model, Let qi = Prob [errors] on each run i, then we have

Probfx errors in y trials] = (x)qi )(l-qi)..

The scrious assumption of the above models is that

the indigenous and seeded errors are assumed to have the

same probability of being detected. In other words, the

seeded errors must be of the same type and should have

1-37
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the same distribution as the indigenous errors. This,

of course, is difficult to meet in real-world conditions.

A suggestion is given in [H078] to overcome this

problem. In this improved approach, two teams are going

to test the program indept.adently. Suppose team 1 detects

n errors and team 2 detects r errors, and the number

of errors common to both teams is K. We can then view

the errors detected by one team, say team 1, as seeded

errors, and estimate the total number of indigenous errors

N to be nr/K. Note, however, that simple errors may be

discovered first and the distribution of errors detected

may not resemble the actual distribution of errors; so

that the estimates may be biased.
r 'V

The advantage that is obvious with these combinatorial

models over the failure-rate based models is that they are

based on less and much simpler assumptions.

1.5.3 Input Domain Based Models

A good representative set of models in this group in-

cludes the Nelson (TRW) model [BRO753, Ho Model [H078],

and the Bastani model [BAS80].

Nelson (TRW)Model
O

The re3iability of the software is measured by exposing

(running) the software with a sample of n inputs. The n

inputs are randomly chosen from the input domain set

E - (.E.: i = 1,N) where each Ei is the set of data values

needed to make a run. The random sampling of n inputs is

done according to a probability distribution Pi; the set

(P.: i - 1,N) is the "operational profile" or simply user
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input distribution. Ifne is the number of inputs that

resulted in execution failure, then an unbiased estimate

for the software reliability R is 1- (ne/n). However,

it may be the case that the test set used during the

verification phase vay not be representative of the ex-

pected operational usage. Brown and Lipow [BR0751 sug-

gested an alternative formula for R which is

N f.
R= 1-i=1 2 P(E.)

where

n. = number of runs sampled from input subdomain E

f. = number of failures observed out of n. runs.

The main difference between Nelson's R and Brown and

Lipow's R is that the former explicitly incorporates the

usage distributionor the test case distribution while the

latter implicitly assumes that the accomplished testing

is representative of the expected usage distribution.

Both models assume prior knowledge of the operational

usage distribution. This may not be easy to do for some

real-world software. Another criticism of this approach

is the use of random testing. ru

Ho Model

Reliability estimation in this model proceeds by

first generating the symbolic execution tree of the pro-

gram. This tree characterizes all the execution paths

and their associated outputs in the program. The nodes

represent statements while the edges represent the state •

vector resulting from symbolic execution along the path
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from the root statement to the current statement. A

procedure for generating the symbolic execution tree
4

is given in [H078]: -

I. The first statement is the root of the tree.

II. If a leaf is not a STOP or RETURN statement,

symbolically execute the statement corresponding

to the node. If the current statement is a

conditional statement, the feasibility of the

branches is examined. New nodes are created

for statements which are successors of the

current statement. Edges, labelled with state

vectors are joined between the current node

and the new node(s).

III. Go to II.

The generated execution paths from the symbolic exe-

cution tree are proven correct or are sample tested. For

a given path, say path i, if it is proven correct, then

the path reliability R. = 1, If path i cannot be proven

correct, a random sample of N test cases is generated

that will execute path i. If no failures result from

the execution of the N test cases, then R. is bounded

below by 1- C. where C. is the confidence interval of

path i. The length of C. is a function of our given

confidence coefficient a. On the other hand, if n

1-40



failures are observed and the errors not corrected, then -_-_W

R is bounded below by C If the observed n

failures are corrected, then the sample testing is re-

peated for path i,

Finally, the software reliability estimate R is

calculated from

m
R i f.R i

where:

fi = weighting factor or path i which corre-

sponds to the execution frequency of path i.

m = total number of execution paths.

One difficulty with applying this approach is the

large number of paths that may exist for real world soft-

ware,

Bastani Model

This input domain based model estimates the reliability

R from the relation

AA= 1- Ve

er

where:
* ^

V.= the total error size remaining in the program.
er

V can be determined by testing the program and locating and
r

estimating the size of errors found [BAS80). An error W
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has a large size if it is easily detected (i.e., if it

affects many input elements). An error has a small size

if it is relatively difficult to detect. The size of an

error depends on the way test inputs are selected. Good

test case selection strategies like path testing, boundary

value analysis, magnify the size of an error since they

exercise error-prone constructs. The observed error

size is lower if random testing is employed. Although

the model does not assume random testing (in fact, any

test strategy can be employed), it offers no easy or sys- .

tematic way to estimate Ve 
r

. 2
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SECTION 2

A TIME DEPENDENT FAULT DETECTION RATE MODEL

2.1 INTRODUCTION

In this section, our objective is to develop a

parsimonious model whose parameters have a physical

interpretation, and which can be used to predict vari-

ous quantitative measures for software performance

assessment. Also of interest is the applicability of

the model over a broad class of projects. Further, it

Vshould be possible to estimate the parameters of the

model from available failure data which could be given

as either the number of failures in specified time in-

tervals, or as times between software failures.

With this objective, we develop and investigate

a nonhomogeneous Poisson process (NHPP) [BR072] model

with a time dependent fault detection rate for the soft-

ware failure phenomenon. By studying the behavior of

the cumulative number of failures by time t process, N(t)

it is shown in section 2.2 that this process can be well

described by a non-homogeneous Poisson process (NHPP)

with a two parameter exponentially decaying fault de-

tection rate.
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NHPP has been used by many researchers to describe

random phenomena in various applications [CR074, DUN75,

DVA64]. Some such applications are the occurrences of

coal mining disasters [MAG52]; equipment failures [DUA64,

LEW64, PR063]; transactions in a data-base system [LEW76];

and software error counts over a series of time intervals

[SCH75]. Various forms of the intensity function for

the NHPP used in actual applications are the exponential

polynomial rate function L:EW76], a log-linear rate

function [COX66], and a Weibull rate function [CR074,

DON75, MOE76].

Several measures for software performance assess-

ment, such as the number of faults remaining in the sys-

tem, distribution of time to next failure, and software

reliability, are proposed in section 2.3. Based on the

NHPP model, expressions are then derived for obtaining

the estimates and confidence limits for these perfor-

mance measures.

Two methods are described in section 2.4 for esti-

mating the parameters of the model from available fail-

ure data. The first one is for the case when data is

given in the form of number of failures in given time

intervals. The time intervals can be of equal or un-
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equal lengths, but the data must be converted to an in-

terval of the same length. The second method is used

when times between software failures are given. Analy-

ses of actual failure data are presented in section 2.5.

'. ,
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2.2 MODEL DEVELOPMENT

A software system in use is subject to failures

caused by faults present in the system. The faults are

encountered when a sequence of instructions is executed

which, in turn, depends on the input data set. In this

section, we develop a model to describe this failure

occurrence phenomenon.

2.2.1 Deterministic Analysis of Software Failure Process

It is useful to first make a simpler analysis by ig-

noring the statistical fluctuations in the number of soft-

ware failures before analyzing the failure phenomenon as

a stochastic process [COX651. Let n(t) denote the cumu-

lative number of software failures detected by time t.

Assume that n(t) is large enough so that is can be ex-

pressed as a continuous function of t. Since the number

of errors in a system is a finite value, n(t) is a bound-

ed non-decreasing function of t with

n(O) = 0

and (2.1)

n(w) = a
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For purposes of modeling, we assume that the usage of

the system is basically similar over time. Then the

number of failures in (t, t+At) is proportional to the

number of undetected faults at t, i.e.,

n(t+At) - n(t) = b(a-n(t)}At , (2.2)

where b is a proportionality constant.

A graphical representation of the above description

is provided in Figure 2.1.

Now, from Equation (2.2), we get the differential

equation

n' (t) = ab - bn(t) . (2.3)

Taking the Laplace transform [ABR65, BUC56] of Equa-

tion (2.3) under the conditions of Equation (2.1), we

have0 
o

sn (s) - s b s)

or

(S) = ab
n~s s(s+b) (2.4)
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b~d-n>2

n(t V)

b [-(t 4O

OW t) n G)-

t A~t t+ht

FIGURE 2.1. A Graphical Representation of the
Deterministic Model for Software
Failures. * W
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where

n(s) = et• dn(t) . (2.5)

The solution of Equation (2.3) is thus obtained by in-

verting Equation (2.4) and is given by

n(t) = a(l - ebt) . (2.6)

Under the assumptions discussed above, Equation

(2.6) is the deterministic model of the software fail-

ure process. For given a and b, we can easily compute

the number of failures to be encountered by some time t

so that the failure phenomenon can be described with

certainty. It should be noted, however, that the actual

failure phenomenon is not deterministic.

2.2.2 Stochastic Analysis of Software Failure Process

In an actual usage, the software system is subject-

ed to random inputs causing the failures to occur at

random times, i.e., the failure phenomenon is stochastic

(non-deterministic). Therefore, a realistic description

of the failure process must incorporate this randomness.
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Let (N(t), t > 0) be a counting process [PYK61,

ROS76, SNY75] representing the cumulative number of

failures by time t. (Note that N(t) is a random vari-

able while n(t) above was taken to be deterministic.)

Assuming that each failure is caused by one fault, N(t)

also represents the cumulative number of faults detect-

ed by time t. It should be pointed out that a detected

fault may not be removed and, as a result, may cause

additional failure(s) at a later stage. For the N(t)

process, such recurrences are counted as new events.

Let m(t) be the mean value function of the N(t)

process, i.e.,

m(t) E[N(t)] . (2.7)

Since m(t) represents the expected number of software

failures or detected faults by time t, it is a non-de-

creasing function of t. If we assume that there will

be a finite number of faults to be detected over a long

period of time, m(t) has the following boundary condi-

tions:

0, t= 0

m(t) (2.8)

• a, t=
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where a < w and represents the expected number of soft-

ware faults to be eventually detected. Furthermore, it

is assumed that, for small At, the expected number of

software failures during (t, t+At) is proportional to

the expected number of software faults undetected by

time t, i.e., "

m(t+At) - m(t) = b{a-m(t)}At , (2.9)

1..

where b is a constant of proportionality. Solving the

differential equation obtained from Equation (2.9) under

the boundary conditions of Equation (2.8), we get

m(t) = a(l - e- bt) . (2.10)

This equation specifies the mean value function for the

underlying software failure counting process N(t). The

intensity function, obtained by taking the derivative

of m(t), represents the fault detection rate at time t

and is given by

X(t) m'(t) = abebt . (2.11)
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We now study the probabilistic behavior of the

N(t) process by using m(t) and X(t). Since there are

no failures at t = 0, we have N(0) = 0. It is also

reasonable to assume that the number of software fail-

ures during non-overlapping time intervals are indepen-

dent. In other words, for any finite collection of

times tI < t2 < ... < t , the n random variables N(t

{N(t 2 )-N(t1 )},...,{N(t n )-N(tn -1 )} are statistically in-

dependent. This implies that the counting process Z

{N(t), t > 0} has independent increments.

We assign the probabilities on the increments of

the N(t) process as follows.

0 with probability i-X(t)At+O(At)

1 with probability X(t)At+O(At)

N(t+At)-N(t) = 2 with probability O(At) (2.12)

where

O(At) 0 as At 0

At
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The underlying N(t) process satisfying conditions of

Equation (2.12) is now a NHPP with mean value function

m(t) and intensity function X(t) as given in Equations

(2.10) and (2.11), respectively [FELW57, FELW60].

Hence, the distribution of N(t) is given by

P{N~t - _{m(t) }Y -m(t)
PeN(t) = yl= ,y e , y = 0,1,2,... (2.13)

Under the assumptions discussed above, the stochastic

behavior of the software failure phenomenon can be com-

pletely described by Equation (2.13). It should be

pointed out that Equation (2.9) implies that the ratio

Number of faults detected during (t, t+At) b (2.14)
(Number of faults undetected by t)At

is constant at an: time t. Therefore, b can be inter-

preted as the error detection rate per error.

Equations (2.10) and (2.13) constitute the basic

software failure model under study in this report.

2 -
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2.3 SOFTWARE PERFORMANCE MEASURES

The model developed in section 2.2 is a descrip-

tion of the failure phenomenon. In order to use this

model to predict software performance, we generally

need expressions for quantitative measures, such as the

number of failures by some prespecified time, the number

of faults remaining in the software at a future time,

and software reliability during a mission. In this sec-

tion, we develop models that can be employed to estimate

such quantities.

2.3.1 Number of Software Faults Detected by t

For given a and b, the distribution of N(t), the

cumulative number of software failures detected by time

t, is obtained from Fquations (2.10) and (2.13) as

-bt -bt
P{N(t)=y}= {a(l-ebt)}Y ea(ley!

y 0,1,2,.. (2.15)

In other words, N(t) has a Poisson distribution with

mean

m(t) H E[N(t)] = a(l - e-b ) . (2.16)
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Note that -j

a y -a

P{N(-)=y} . e , y = 0,1,2,..., (2.17)

i.e., the distribution of N(-), the total number of

failures encountered or faults detected if the system

is used indefinitely, is also a Poisson distribution

with mean 'a'. This result is consistent with theore-

tical studies which indicate that the Poisson process

is the limiting distribution of many phenomena similar

to the software error occurrence phenomenon [MIL76,

SNY 75].

2.3.2 Number of Remaining Faults

lWe have been considering the number of failures en-

countered by time t, N(t). Since many of the performance

measures depend on the number of faults remaining in the

system, we now consider this phenomenon.

Let N(t) be the number of faults remaining in the

system at time t, i.e.,

K(t) F N(-) - N(t) . (2.18)
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The expectation of N(t) is given by

E[N(t)] = ae - b t . (2.19)

2.3.3 Conditional Distribution and Expectation of K(t)

If we have already observed y faults, it is useful

to know the distribution of the number of faults yet to

be detected. In other words, the conditional distribu-

tion of N(t), given that N(t) = y, is ..

P{K(t)=xiN(t)=y} P{N(t)=x, N(t)=y}P7N(t)=y} " (2.20)

Now the event N(t) = x denotes occurrences over the time

interval (t,-) while the event N(t) = y denotes occur- S

rences over the interval (0,t), i.e., these two events

represent non-overlapping time intervals. From a basic

property of the NHPP process, such events are independent 6

of each other, so that we have

P{1(t)=xjN(t)=y} = P{N(t)=x}, x = 0,1,2,... (2.21)

or

4
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P(N()-Nt)=IN~)= - {m(o)-m(t)l I -{nIoo)-m(t)).x! e

Or, substituting for m(-) and m(t) from Equation (2.10),

we get

PIN (-)-N(t)=xlN(t)=Y} = a-a(l-e'-bt }x e {a-a(l-e"-bt ) }. .

This yields

-bt x -bt
P{g(t)=xlN(t)=y } = {ae -

X  eae- b  (2.22)

Finally, the expected number of faults to be detected,

given N(t) = y, is

E[N(t) IN(t)=y] = ae -bt . (2.23)

This conditional distribution is important for deciding

whether the software system under development can be
W

released or not. The decision should be made based on

the number of faults remaining in the software because

this quantity plays an important role in software reli-

ability assessment. Suppose that the decision-maker

conducts an experiment and finds y software faults by

time t. Then, a decision might be to
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Accept if I(t) <n0

and

Reject if K(t) > no

where n 0 is some specified number. For this decision

rule, the probability that the software system is ac-

cepted for a given number of failures y by tine t is

P{Accept} P{N(t) < n0IN(t) =y}

and, using Equation (2.22), becomes

no
P{Accept} E P[FN(t)=ilN(t)=y] (2.24) 9

i=O

The conditional expectation of Ki(t), given N(t)=y,

is given by

E[N(t)jN(t)=y] =E[N(t)]

or

VE[N(t)IN(t)=y] =ae-bt (2.25)
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Therefore, the expected number of faults remaining in

the software system at time t, given that y errors have

been detected during the testing period t, is simply

the expected number of faults to be detected during

(t,c1.

- '

*1
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2.4 SOFTWARE RELIABILITY AND DISTRIBUTION OF TIME - U
BETWEEN FAILURES

2.4.1 Software Reliability

Let a sequence of random variables {Xi, i =1,2,...

denote a sequence of times between software failures

associated with the N(t) process. Then X. denotes the1

time between the (i-l)st and the ith failures. We also

define

n
S E Xi, n = 1,2,... (2.26)Sn il

which represents the time to the nth failure. Let 4l(x)

be the Cumulative Distribution Function (cdf) of XI ,

i.e.,

PXl(x) P{X 1 < x} . (2.27)
1

Note that the event {X1 > x} implies that there are no

failures during (0,x], i.e., the event {N(x) = 0}. Then,

using Equation (2.15), the reliability function associ-

ated with the first failure tirtle is given by

SRx (x) E P{X 1 > x) P[N(x) 01
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or

Rx x) e eal -b (2.28)

Now, the cdf of X can be written as1

=0 1 (x R, (x

or

W x) 1ea l ). (2.29)

The Probability Density Function (pdf) is defined as

so that

(xW abe bx ea(l e . (2.30)

Next, consider the conditional probability distribution,

xIx(XIS), of ixjxi The event (X2 > xIX1 = S} im-

plies {no failures in (s,s+x]1. Then the conditional
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reliability function of the second failure, given that

the first failure occurs at time s, is given by

R x 2X(XIS) P{x 2 > XIX 1  S)5

-P{no failures in (s,s+x]}

-P{N(s+x) -N(x) =01

=e-[m(s+x) - rn(s)]

=ea[e-b - e b(s+x) 1  (2.31)

From Equation (2.31), we obtain

it X2 Ix 1(xis) 1 - R xi2X1(XIS)

1 eal-bs eb(s+x)) (2.32)

and

x jx(XIS) a I (XIS)

=abe -b(s+x) e a{e e bsx*(2.33)
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Combining Equations (2.29) and (2.33), we get the joint

density of X1 and X2 as

X 11x2) = x (x2lxl)X (x1 )
1'2 2X1 1

-bx 1  -b(x 1 +x 2 )
= (abe (abe ) ....

-bx -bx 1e -b 1(Xl+X2)-a1 l-e b x l ee
e-a~e - }

• )e

or

-bx -b~x +x-bx 1Xl+X2)

Xl'X2 (X'X 2) = a2b2e be eb(X+X2)ea{1 e }. (2.34)

Making the transformation sI = xI s s2 = x1+x2, the joint

density of S1 and S is

-bs 2)•
22e-bs1 -bs2

SI,,S 2  ) 2 a b e e ea(le . (2.35)

In general, it can be shown that the conditional

reliability function of Xk, given Skl = s, is given by

a-bs -e-b (s+x)

Rx kSkl (xis) = e - a{e . (2.36)

2-21

lq ° S



1

2.4.2 Conditional Distribution of X kISkl1

The conditional cdf and pdf are obtained from Equa-

tion (2.36) by recalling that R(x) = 1 - P(x) and 4(x) =

d -Ix). Thus, we have

(xls) = e-a{e - b s 
- e-b(s+x) (2.37)

XkISk_ 1  -

and

= abeb(s+X) ate -(2.e38
XkISk 1  e (2.38)

respectively.

As can be seen from the above equations, the time

to the next failure depends on the time when the last

failure occurs. It should be noted that the distribu-

tions of times between failures are improper, i.e.,

-bs

P XkISk I ' = 1 - eae < 1 . (2.39)

This is due to the fact that the event {no failures in

0 (0,-]} is allowed in our model. Hence, the expectations

of these quantities do not exist.
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2.4.3 Joint Density of Waiting Times

As defined above, [Xk, k = 1,2 ... ) denotes the se-

quence of times between software failures. Then

n
Sn = Xi, n = 1,2,...

n i=l

is called the waiting time to the nth software failure.

This quantity is quite important for estimation of para-

meters a and b and, hence, we obtain the distribution U

of {SIS2,...,Sn1 . The distribution is obtained by using

an approach similar to that used for getting Equation

(2.34). The result is summarized in the following theorem.

Theorem. The joint probability density of SIS 2 ,...,S n

is given by
n

-b E s. -bs

I ,(s ' ' n = (ab) n - e i=l e-a(l-e (2.40)

where Sl,S 2 ,...,s n denote the realizations of Sips

Sn respectively.

The density can also be written as

-m(sn) n
(S l ' 's ) = e 11 X(sk) (2.41)

, n k
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where X(sk) = d-{m(s) } and m(sk) = a(l-e k. For

a oroof of this theorem, see [COX66] and [DON75].

Equation (2.40) will *,e used later to estimate a

and b based on observed data s = (si,...,sn).

2.4.4 Joint Counting Probability

The property of independent increments, along with

Equations (2.8) and (2.12), provides a complete statis-

tical characterization for NHPP so that the joint count-

ing probability can be determined for any collection of

times 0 < tI < t2 < ... < t. That is, with t 0,

Y0 = 0.

J

P{N(tl) = yl,N(t2 ) = y2 ,...,N(tn) =yn }

n
1 P{N(ti) - N(ti = Y - ii-t

i=l ii1 i-y-
1 i-l~y-Yi-i

n [m (t i ) - m (ti _I ) ].- m

= Ie (2.42)
i=l (Yi - Yi-i )

Equation (2.42) is needed for estimating the parameters

a and b for given data {(yiti), i =1,2,...,n}.
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2.5 ESTIMATION OF MODEL PARAMETERS FROM FAILURE DATA

The basic models for the failure process and perfor-

mance measures were developed in Sections 2.2 and 2.3,

respectively. In order to use these models for software

performance assessment, the only parameters to be speci-

fied are the total expected number of errors to be de-

tected, a, and the error detection rate per error, b.

In other words, for given a and b, various useful quan-

tities can be computed from the relevant equations in

sections 2.2 and 2.3.

In general, a and b are not known for a specific

software system and are estimated from the available

data generated during testing. However, that is not

the only way to get a and b. One may be willing to ex-

trapolate these values based on the data from one or

more "similar" systems. Another method would be te use

a Bayesian approach, whereby knowledge about a and b can

be expressed as prior distributions and used for rerfor-

mance assessment. This approach can also be used in

conjunction with available data and is specially useful

when failure data are scarce or expensive to collect.

The purpose of this section is to describe methods

for estimating a and b from failure data. Use of these

2-25

WP



Lw

methods is illustrated later via failure data from oper-

ational systems. Such data are generally available as

(i) total number of failures in given time

intervals; and/or as

(ii) times between failures.

Most of the available data is given in the form of

number of failures in given time intervals; the data on

times between failures is very rare. Nevertheless, both

of these cases are considered below.

2.5.1 Estimation When Cumulative Failures Are Given

We first consider the case when data are available

as cumulative number of failures in given time intervals.

Suppose YlY 2 ,...,Y n are the cumulative number of failures

detected by times tilt 2 ,...,t n, respectively. This can

also be written as data pairs {(yi,ti), i = 1,2,...,n).

Thus, the number of failures in time interval (t il,t i )

is (yi-Yi-l) for i = 1,2,3,...,n, where t0 = 0 and y 0 o 0. 0

We will obtain the Maximum Likelihood Estimates a and b

of a and b, respectively. To do this, we first write the

0 joint density and obtain the likelihood function, and W

then the log-likelihood function. Next, we take the par-

tial derivatives of the log-likelihood function with re-

spect to a and b and equate them to zero for maximization.
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The solutions of the resulting two equations are the de-

sired values (a,b).

Now, to get the joint density, we note that in our

notations ylY2,'.yn are the observed values of N(t I ) ,

1(t 2 ) , . . . , N(tn) , respectively. Hence, from Equation

(2.42),

P{N(tl) = yl,N(t 2 ) = y 2 ,...,N(tn =y

whr m(t2) Y2 n n

i-Yil
n [m(ti )-m(t ism) ] the- {m(t ) - m ( t i l

i~l (yi-Yi-l) !
(2.43)

-bt i
where m(t i )  a(l-e )

: It is well known that the likelihood function for

b,.the parameters is simply the joint density of y lY2,..

Yn'l with these values considered as known constants.

Substituting for m(t i ) in Equation (2.43), the likeli-

hood function for (a,b), given the data (t,y), is

n a(-bti-l- - b t i }y i - i - I

L a,b ly, t )  = a e-

i~~l (yi-Yi-l)

-bt n _
-a (l-e n "

e .(2.44)

Taking the natural logarithm of Equation (2.44) yields:
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n n
tnL(a,bIy,t) = 7 (yi-yi_l)Zna + E (yi-yil)

-bti l -bti ) n
£n(e'l-e ) .

i=l

-bt

n _l ) ! - a(l-e ). (2.45)

As mentioned above, the maximum likelihood estimates

(mle's) are those values of a and b which maximize

£nL(a,bLt,y), i.e., which satisfy (for brevity we write......S.

L to denote L(a,bjt,y))

D 9nL _03a

and (2.46)

nL -

ab

By taking the partial derivatives of Equation (2.45)

and equating them to zero, we obtain, after some simpli-

fication (recall that y0 = 0),

Vw
-bta(l-e n) = Yn ' (2.47)

and
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The solutions of the resulting two equations are the de-

sired values (a,b). *
Now, to get the joint density, we note that in our

notations YlIY2...*lYn are the observed values of N(t9 )6'

U(t )1,...1,N(t~) respectively. Hence, from Equation

(2.42),

P{N(t 1) ylN (t2) Y2 y~...,N (tn) Yn

n [m (t )-m(ti 1 i l -m(t .)-m(t i 1)
=IT e

i~l (~-y~..1)(2.43)

-bt.
where m(t. = a(l-e 1)r '

It is well known that the likelihood function for

the parameters is simply the joint density of y .
I 2

Ynwith these values considered as known constants.

Substituting for m(t.) in Equation (2.43), the likeli-

hood function for (a,b), given the data (t,y), is

L(a,bIy,t) H {a(e -e

* -bt

e a 1-e ) (2.44)

Taking the natural logarithm of Equation (2.44) yields:
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n n
RnL(a,bIY_,t) F (yi-yi_1 )Xna E (y.-y.-l

-bt -bt. n
Zn(e ii-e 1) Z'

-bt

n a(l-e ). (2.4i5)

As mentioned above, the maximum likelihood estimates

(mie's) are those values of a and b which maximize

* 9nL(a,bjL,y), i.e., which satisfy (for brevity we write

L to denote L(a,blt,y))

ai~nL-

and (2.4~6)

MnL-

* By taking the partial derivatives of Equation (2.415)6

and equating them to zero, we obtain, after some simpli-

fication (recall that yo 0),

-bt
a(l-e nl =yn (2.417)

and
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F

-bt n n (yi-Yi_)(tie -tibet)-bt

atne = hb. (2.48)
n i= ebti-1 _ t

e -64

As can be easily seen, all the quantities in Equa-

tions (2.47) and (2.48) are known except a and b, which

are to be estimated. These equations do not yield sim-

ple analytical forms and we use numerical methods for

their solution. The resulting values of a and b are

the mle's a and b, respectively. p -.

It should be pointed out that, even though the mle's

are the desired values, it is often useful to study the

log-likelihood surface as a function of parameters a and

b. For given data, a plot of the log-likelihood surface

can be obtained by solving Equation (2.45) for a grid of

values of a and b. If the plot is flat, it woull indi-

cate a large variability associated with the mle's while

a sharp surface is an indicator of low variability. A

surface with sharp rises and falls might cause problems

in numerical solution of Equations (2.47) and (2.48),

while a well-behaved surface would ensure rapid conver-

gence to the values a, b. P
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2.5.1.1 Confidence Region for (a,b)

In addition to the rile's a, b, we generally want

to quantify the region in which the true values a, b

might lie with a specified degree of confidence. This

is referred to as obtaining the 100(1-u)% joint confi-

dence region for (a,b). In general, it is not possible -.

to get the exact confidence region [FIN76] because the

true distribution of (a,b) is unknown. However, mle's

have a very desirable property that they are asymptotic-

ally normally distributed, if the sample size is large.

Also of great usefulness is the invariance property

of the mle's, i.e., a function of (a,b) can be estimated

by using the mle's a, b and this function will also be a

mle. This will be useful for estimating K(t), R(t), etc.

Formally, as indicated above, the mle's are normal-

ly distributed for large n, i.e.,

N ( Ecov as n (2.49)

(a (

The variance-covariance matrix represents
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(Var (a) Cov (a, b)

coy

Cov (b, a) Var (b) /

and is given by

raa rab

(2.50)

r ba r bb

where

a2
r . E -,1,-r iij =a,b.

That is,

_ a 2 nLra - a (2.51)

aa 22
aaa

rb _E a 2 nL (2.53)
bb ab 2
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Taking the appropriate partial derivatives of 3

Equation (2.45) and substituting in Equations (2.51),

(2.52), and (2.53), we obtain, after some simplifica-
-bt.

tion, (recall that E[N(ti)] m(ti) = a(l-e 1)):

1 n -bti 1  -bt.
r - (e - e ) , (2.54)aa a i=l

-btn
r ab = ba t n e (2.55)

and

n (t t2 e-bt i-l-bt i  2 b=aP ( -bt 1  bt - at2  e . (2.56)

rbb bt -bt. n
i=l (e - e )

Substituting these expressions in Equation (2.50), we

get the variance-covariance matrix for (a,b). Thus,

the asymptotic distribution of (a,b) is completely spe-

cified If (a,b) are known. However, in practice, (a,b)

are not known Therefore, we use their estimates, (a,b),

in Equations (2.49), (2.54), (2.55), and (2.56) to getU 
V

estimates of the parameters of the asymptotic bivariate

normal distribution.
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Now, the correlation coefficient between aand b

is estimated as

P Coy (a,b) (2.57)
a,b

VVar(a), Var(b)

where Var(a), Var(b), Cov(a,b) are obtained from Equa-

tions (2.50) to (2.53).

* Finally, to obtain the 100(1-a)% confidence regions

for a and b, we use the following approximation ([ROU73])

ZnL(a,bly,t) - £nL(a,bjyt .1 2

or

12
9nL(a,bjy,L) Z nL(a,bly,t) - X2;a (2.58)

where 9ZnL(a,Ljy,t) represents the value of the log-

likelihood function at a = a and b = b.

Substituting Equation (2.4~5) in Equation (2.58),

we get
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0

n n -bt -bt i  - S
(y.-y. )na + E (yi-Yi_l)Zn(e i-l-e

i=l i=l 1-

n -bt
E 9.n{ ( _ a (l-e f C, (2.59)i=l "

where

C : mnL(a,bIL,t) - 2 (2.60)

Equation (2.59) defines a contour of the 100(1-a)%

confidence region. For given data, a, b, and a, Equa-

tion (2.59) can be solved for those values of a and b

which satisfy it. (For computational purposes, it is

easier to take values of a (> a) and solve for the cor-

responding values of b.)

S

2.5.2 Estimation When Times Between Failures
Are Given

Now we consider the case when data is available in

the form of times between individual failures. As men-

tioned earlier, such data is not common and is rarely

available.

Recall that XI x 2 , . . . ,xn denote the times between

n
failures and S E X . Then the data is in the formn i=l 1
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n
= (XlX 2,...,xn) and sn = x. The distribution of

i=l 1

times between failures was discussed in section 2.4.3

and is obtained from Equations (2.40) and (2.41), as --

n
-b E s. -bs

(...,Sn \ = (ab) ne i=l *e-a(l-e n)

The likelihood function for a, b, given s, is the same "

as above and can be written as

n -

-b E s. -bs

L(abs) =(ab) n e i=l e-a(l-e n (2.61)

Then the log (natural) likelihood is S

n -bs
ZnL(a,bjs) = ntna+nknb-b E s.-a(l-e n). (2.62)

i=l

To get the maximum likelihood estimates a, b, we take

the partial derivatives of Equation (2.62) and equate

5 them to zero, i.e., w

a9£nL
- 0 (2.63)

U 2
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and 7

a 9nL
-- = 0 . (2.64)

These equations yield

-bs-
1 - e (2.65)

a

and

-bs nn n
as • e n + E s. (2.66)

b n i-l1

As in the first case, these equations do not yield

simple analytical solutions and have to be solved

numerically. The solutions of Equations (2.65), and
^S

(2.66) are the mle's a and b.

Regarding the asymptotic distribution of (a,b), re-

call that (see section 2.4.2) the joint density of SI,

...,Sn is improper. Therefore, the asymptotic proper-

ties of mle's do not hold in this case.

To obtain the 100(l-e)% confidence regions for

(a,b), we use the same approximation as was used in

section 2.5.1, viz.
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InL(a,bls) - nL(a,bls) Y X2;a * (2.67)

From Equations (2.62) and (2.67), a contour of the

100 (1-ai)% confidence region is obtained as

n -bsn
nina +nInb -b E s. -a(1-e )=C, (2.68)

where

C = nL(a,bLi) 1 X2; * (2.69)

As before, Equation (2.68) can be solved for given

SO a, b, and a to get the desired contours.
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2.6 GOODNESS-OF-FIT TEST

In this section, we describe the Kolmogorov-Smirnov

goodness-of-fit test (K-S Test) to check whether the

1NPWP model developed in sections 2.2 and 2.5 provides a

good fit to a given set of failure data.

Consider the case when the data are given as a se-

*quence of software failure times s= s )., We
2" 'n

want to test whether the events s are generated from a

NHPP. Suppose that 0 < S~<~<* are the random

1~~- S...'...<-

times at which the first n events occur in a NHPP with un-

known mean value function m(t). We wish to test the

simple hypothesis _

mH t MM m (t) for t > 0,

versus

Hi MMt m m(t) for t > 0.

b0t

Writing m M a(1-e the hypothesis H can be

wr"itten as

-2-38



-bot
H 0: mlt) = a 0 (1-e ) for t > 0. (2.70)

For testing purposes, we need the joint conditional dis-

tribution of the failure times. The following theorem

is useful in deriving this distribution.

Theorem. Given that N(t) = n, the n failure times

0 < S1 < S2 < < Sn in the interval [O,t] are random

variables whose joint conditional distribution is the

same as the distribution of the order statistics of a

random sample of size n from the distribution G(x) = m(x)
m"(t)

for 0 < x < t.

For proof of this Theorem, see Cox and Lewis [C0X66].

Corollary. Given that S= t, the (n-l) failure times

0< l . have the same joint conditional
1. .S2 <. ., .-

distribution as the order statistics of a random sample

of size (n-l) from the distribution G(x) = .,.-

This Corollary easily follows from the above Theorem.

Using this Corollary, we reduce the hypothesis of Equation

(2.70) to

-- m0(Ix)
H G(x) G0(x) for 0 < x < t. (2.71)
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For our case we have

H G(x) = 1-e for 0 < x < t. (2.72)

1-e 0

Note that the expression in Equation (2.72) represents a

truncated exponential distribution.

We now consider the Kolmogorov-Smirnov (K-S) good-

ness-of-fit test [ROM76, ROV73]. Given the values of

a random sample of size n-l, SlS20...s n-l' we define

the sample cdf by Hn(x) = k/(n-l), where k is the
n--

number of sample values < x. Thus, Hn 1 (x) is a step

function which is zero for x less than Sl, has a jump
', . ....-

of 1/(n-l) at each sk, and is 1 for x greater than or

equal to sn I  That is,

0x S

HnilX) = k/(n-1) , Skl<X<Sk , k=2,3,...,n-1. (2.73)

I , x __Sn 1 ,.
1..-.

Since Hn_1 is a step function and G is monotonically in-

creasing and continuous, it suffices to test the absolute
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deviations at the sample points sk k 1,,,,n1

and then take the maximum of these (n-i) values. The

following procedure is used for calculating the test

statistic D. For each k = 1,2,...,n-l, set

Dk = max{IG (sk) - n--jI, IGo(Sk) - - i1

Then set

D = max{Dk} . (2.74)
k

If the value of D calculated in Equation (2.74) is great-

er than or equal to the critical value Dn-l;& , we reject

the null hypothesis H0 that SIS 2 ,...n follow U0 (x);0 lPS..-.....Sn'

otherwise we do not reject the null hypothesis. The

critical values Dnl.a associated with the K-S test at

a level of significance a are available from statistical

tables [ROH76, p. 6611.

It should be noted that, if the parameters of GO (x)

are estimated from the sample, the K-S test can be used

but will give extremely conservative results. To achieve

better results, the level of significance needs to be

adjusted. One approach suggested by Allen [ALL781 is
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to test at the 5% level of significance and use the

critical value for the 20% level or test at the 1%

level and use the critical value for 10% level. We 2
will use this approach in our analyses in later sec-,

tions.

Another use of the K-S test in our context is in

developing confidence limits for the true cdf G(x).

For example, if we take a random sample of size (n-l)

and use it tc construct the sample cdf Hni(X), then

we can be 100(1-a)% confident that the true cdf G(x)

does not deviate from Hn-i (x) by more than D

That is, the 100(l-a)% confidence limits for G(x) are

given by - ,

H (x) G(x) < H (x) + D (2.75)n-1(X) Dn-l;a n-1 n-1;.

These limits are especially useful in the case when the

parameters of G (x) are to be estimated from the data.

For this case, the null hypothesis H0 will be rejected

at a level of significance a if one or more points of

G0 (x) fall outside the 100(1-a)% confidence limits given

by Equation (2.75). Otherwise, it will not be rejected. -
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2.7 ANALYSIS OF FAILURE DATA FROM NAVAL TACTICAL
DATA SYSTEM (NTDS)

Jelinski and Moranda [JEL 72] first analyzed some

software failure data from the U.S. Navy Fleet Computer V

Programming Center. Since then, this data set has been

used by several investigators for model validation pur-

poses. In this section, we analyze the same data set

to see how good the NHPP model is in modelling these

failures.

The data set was extracted from information about

errors in the development of software for the real-time,

multi-computer complex which forms the core of the

Naval Tactical Data System (NTDS). The 14TDS software

consisted of some 38 different project schedules. Each

module was supposed to follow three stages: the produc-

tion (or development) phase, the test phase, and the

user phase. Many of the "trouble reports" or "software

anomaly reports" were generated whenever a system-level

symptom of a deficiency was noted by operators or users.

A proper trace back to the exact cause in software of

this symptom was done by personnel familiar with the

entire system. However, Jelinski and Moranda felt that

it was better to analyze the data from isolated modules

than from the total system, due to the fact that many

2-43



of the modules did not evolve in the fashion indicated.

One of the larger modules, denoted by A-module, had the

desired pattern. The times (in days) between failures

for this module are shown in Table 2.1. Twenty-six

software faults were found during the production phase

and five additional faultr during the test phase. The

last fault was found on 4 Jan 1971. One fault was ob-

served during the user phase on 20 Sept 1971 and two

more faults (4 Oct 1971, 10 Nov 1971) during the test

phase. This indicates that a re-work of the module

had taken place after the user error was found. A more

detailed description of the NTDS software can be found

in [JEL72].

Data Analyses

The data in this case is available as times between

software failures and hence the method described in

section 2.5.2 will be used for estimation of parameters.

We consider the first 26 data points of Table 2.1, for
26

which n 26 and s26 xk = 250 days.
k=l

To get an appreciation of the likelihood function 2
associated with this data set, the log-likelihood from

Equation (2.62) is plotted in Figure 2.2. We see that
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TABLE 2.1

SOFTWARE FAILURE DATA FROM NTDS

ERROR NO. TIME BETWEEN FAILURES CUMULATIVE TIME
_____________xk, days s,~ aE xk days

Production
(Checkout) Phase

1 9 9
2 12 21
3 11 32
4 4 36
5 7 43
6 2 45
7 5 50
8 8 58
9 5 63

10 7 70
11 1 71
12 6 77
13 1 78
14 9 87
15 4 91
16 1 92
17 3 95
18 3 98
19 6 104
20 1 105
21 11 116
22 33 149
23 7 156
24 91 247
25 2 249
26 1 250

Test Phase

27 87 337
28 47 384
29 12 396
30 9 405
31 135 540

32258 798

3316 814
34 35 849
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the surface rises sharply along the b-axis and is rela-

tively flat along the a-axis.

The maximum of this surface is obtained by solving

Equations (2.65) and (2.66). Substituting the appropri-

ate values from Table 2.6 in Equations (2.65) and (2.66)

we get

26 = 1- e- b(2 5 0 ) (2.76)

a

and p .

26 = a(250) e - b ( 2 5 0 ) + 250. (2.77)b

Solving Equations (2.76) and (2.77) numerically, we get

a = 33.99

and

b = 0.00579

as the mle's for a and b, respectively. The fitted mean

value function is
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m(t) = 33.99(1 - e 0 . 0 0 5 7 9 t) . (2.78)

and is shown in Figure 2.3, along with the actual data

(determination of the confidence bounds will be discuss-

ed later).

Goodness-of-fit Test

We now perform the Kolmogorov-Smirnov goodness-of-

fit test to check the adequacy of the fitted model. Now,

using the Corollary and the results in Section 2.6, we

conduct the test based on 26-1 = 25 points. The hypo-

thesis, from Equation (2.71), is

-box

H0: GO (x) = l-e for O<x<250, (2.79)
(250)1-e . .

and the sample cdf is

0 , S

H(x) = k/25 Sk~l<X<Sk, k=2,3,...,25 (2.80)

1 _25
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Figure 2.3. Plots of Mean Value Function and 90% Confidence

Bounds for the N (t) Process (NTDS Data)
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The values of sk and H(sk) are given in Table 2.2. To

compute GO(sk) for various sk values, we .2place b0 by

b in Equation (2.79) and obtain Column 4 of Table 2.2.

Entries in Columns 5 and 6 are easily obtained from

Columns 3 and 4. Now, from Equations (2.47) and (2.79),

D = max{lG0(sk) - H(sk) , IC-0(sk) - H(skl I)i}.
k

In other words, D is the largest entry in Columns 5 and

6 and is seen to be

D = 0.2044.

To test at a = .05, we use a critical value correspond-

ing to a = .20 as discussed in section 2.6. .

From statistical tables, .

D - 0.208
D25;0.2 0 28-[

Since D < D2 5 ;0 .2' we accept the nuil hypothesis, H0 ,

at 5% level of significance.

The 100(l-a)% confidence limits for G(x) can now

be calculated from Equation (2.75). For example, for
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TABLE 2.2

KO U4)GOROV-SMIRNOV TEST
FOR THE NTDS DATA SET

k S k H(sk) GO0(s k) IG O(sk)-H(sk )I IGO (sk )-H(Sk..l)t

1 9 0.04 0.0664 0.0264 0.0664

2 21 0.08 0.1497 0.0697 0.1097

3 32 0.12 0.2211 0.1011 0.1411

4 36 0.16 0.2460 0.0860 0.1260

5 43 0.20 0.2882 0.0882 0.1282

6 45 0.24 0.2999 0.0599 0.0999
7 50 0.28 0.3286 0.0486 0.0886

*8 58 0.32 0.3730 0.0530 0.0930

9 63 0.36 0.3996 0.0396 0.0796

10 70 0.40 0.4357 0.0357 0.0757
11 71 0.44 0.4407 0.0007 0.0407

12 77 0.48 0.4703 0.0097 0.0303

13 78 0.52 0.4751 0.0449 0.0049

14 87 0.56 0.5174 0.0426 0.0026

15 91 0.60 0.5355 0.0645 0.0245

16 92 0.64 0.5399 0.1001 0.0601

17 95 0.68 0.5532 0.1268 0.0868 ..-

18 '98 0.72 0.5661 0.1539 0.1139-
19 104 0.76 0.5915 0.1685 0.1285

20 105 0.80 0.5956 0.2044 0.1644

21 116 0.84 0.6395 0.2005 0.1605
22 149 0.88 0.7557 0.1243 0.0843

23 156 0.92 0.7776 0.1424 0.1024

24 247 0.96 0.9946 0.0346 0.0746

25 249 11.00 10.9982 1 0.0018 0.0382
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0.05, we have D5;0.05 0.264, so that the lower

and upper confidence bounds are

L(x) = max{H(x) - 0.264,01

and

U(x) = min{H(x) + 0.264,1},

where H(x) is given by Equation (2.80). The 95% bounds

for G(x), along with G (x), are shown in Figure 2.4.

We see that the fitted model seems to be adequate.

Having established that the model provides a good

fit, various performance measures of interest can be

obtained by substituting the estimated values of a and

b in the appropriate equations of sections 2.3 and 2.4.

The estimated mean value function, as given in Equa-
^ (l~~e-0 00579t) .. '

tion (2.78), is m(t) = 33.99(.e. A plot of

m(t) and the actual number of faults detected during the -

production period for this case was given in Figure 2.3.

Also shown were the 90% confidence bounds for the N(t)

process as computed from Equation (2.15).
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The 100 (1-a)% confidence regions for a and b are

obtained from Equations (2.68) and (2.69) following a

procedure similar to the one detailed in section 2.7.

These are shown in Figure 2.5 for a = 0.05, 0.25, and

0.50.

Finally, software reliability, R S 250), can

be computed from Equation (2.36). For example, the re-

liability values after x = 5, 10, 20, and 30 days are

0.796, 0.638, 0.417, and 0.280, respectively. Thus, the

probability that the system will operate without any

failures for 30 additional days is 0.28. As seen from

the data in Table 2.1, the system did operate without

any failures for 87 days subsequent to failure number

26.
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2.8 A1ALYSIS OF FAILURE DATA FROM A LARGE SCALE
SOFTWARE SYSTEM

The data to be analyzed in this section have been

taken from a large scale project reported in Thayer et

al. [THA76]. This project represents an initial de-

livery of a large command and control software package

written in JOVIAL/J4 (JOVIAL is a higher order language

generally used for Air Force Command and Control appli-

cations). It consists of 115,346 total source state-

ments and 249 routines. Some other characteristics of

this project are summarized in Table 2.3. The software

was developed functionally, i.e., the project was di-

vided into work units responsible for different func-

tions. Software testing started with developing test-

ing by the development personnel to demonstrate specific

functional capabilities, test data extremes, etc.

2.8.1 Failure Data
-- 0

The failure data used for this study is taken from

the Software Problem Reports (SPR's) generated during

the formal testing phases of this project. Formal test-

ing, which comprises of validation and acceptance testing,

began after development testing. Validation testing was
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TABLE 2.3

SOFTWARE PROJECT CHARACTERISTICS

Size (Total source statement) 115,346

Number of routines 249

Language JOVIAL/J4

Formal Requirements To function level

Co-contractor Yes

Subcontractor NO

Operating Mode Batch

Formal Testing 24 Weeks

Validation 10

Acceptance 2

integration 10

Operational Demonstration 2
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performed by an independent test group at the subsystem

level and demonstrated the approved software performance

and requirements. Acceptance testing ran a subset of

the Validation tests to demonstrate specific requirements.

After Acceptance testing, the software underwent final

Integration testing by an independent group. Integration

testing demonstrated that the applications software cor-

rectly interfaced with the operating system and system

support software. Finally, Operational Demonstration

testing was done to demonstrate the software in an oper-

ational environment using an operational timeline and

operational data. The data for this error data set was

obtained from the four formal test phases (Validation,

Acceptance, Integration, and Operational Demonstration)

of the applications software. This is so because the

majority of the errors analyzed were detected during

formal testing.

The time period for the various phases of testing

is validation (Jun 1-Aug 12), Acceptance (Aug 13-Aug 24),

Integration (Aug 25-Oct 26), and Operational Demonstra-

tion (Oct 27-Nov 12) testing. In addition to the above

data, operational data spanning a period of approximate- -

ly nine months was also available and is used for com-

parison with the predicted values. The only time frame
2
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readily available from the data was the calendar day.

The data also contain the mistakes by the operators and

the "explanatory" errors, i.e., corrections to make a

change to a comment statement or those errors for which

a "fix" is not to a routine. These explanatory errors

do or do not indicate the type of change. Therefore,

the original data was restructured into four sets of

data denoted by DSI, DS2, DS3, and DS4 [SUK76]. The

description and the total number of faults detected dur-

ing the formal testing phases for each data set are

given in Table 2.4.

In this analysis, the number of software faults

detected during formal testing is counted on a weekly

basis. Also, for each data set, the software faults

detected during the first nine weeks are eliminated

due to the fact that we are interested in analyzing

the software failures over the period when they are

decreasing. The number of SPR's for the 15-week period

for the four cases (DSI to DS4) are given in Table 2.5.

2.8.2 Estimation of Parameters W1

As seen in Table 2.5, the data for this project

are in the form (tl,yI ), (t2 ,y2 ),...,(t 1 5,Y 1 5), i.e.,
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as the number of failures in specified time intervals.

Hence, the estimates a and b are obtained by simultane-

ously solving Equations (2.47) and (2.48). Thus, by

substituting the data set DSl in Equations (2.47) and

(2.48) and solving, we get

a = 1348, b = 0.124

and the fitted mean value function is

-0.1 4t)

m(t) = 1348(1 - e - 2 t, t > 0

This is also an estimate of the expected number of soft-

ware failures observed by time t. A plot of the actual

cumulative number of failures and the fitted values is

given in Figure 2.6.

2.8.3 Goodness-of-fit Test

The goodness-of-fit test is now conducted following

the procedure discussed in section 2.6. Since the sample

size is 15, the null hypothesis to be tested can be

written as
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1-eH: G_(tb 5 for i=1,2,...,15, (2.81)

1-e

and the sample cdf as

0 ,X t1

H(x) = yi/Yl5, ti_l<x<ti, i=2,3,...,15. (2.82)

115

The computed values of H(x) for various ti are given in

column 2 of Table 2.6. V

Now we substitute b0 = b = 0.124 in Equation (2.81)

and compute the value of G0 (ti) for i = 1,2,...,15.

These values are given in column 3 of Table 2.6. Columns O

4 and 5 of this table are the quantities needed to find

D = max{Dk} (see Equation (2.74)). From these columns
k

we find the value of D to be 0.096 corresponding to ti  9. -

To find the critical value corresponding to sample

size 15 and a = .05, we first note that the parameters

had to be estimated in this case. As mentioned in sec-

tion 2.6, for a situation like this, a suggested ap-

proach is to take a = .20 to get good results. From
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TABLE 2.6

DATA FOR KOLI*GOROV-SMIRNOV TEST

(DATA SET DSl)

t H(t.) G0(t) G0( H()I G0( -t Il

1 0.1784 0.1381 0.0403 0.1381

2 0.2979 0.2601 0.0378 0.0817

3 0.4587 0.3679 0.0908 0.0700

4 0.5000 0.4631 0.0369 0.0044

5 0.5404 0.5472 0.0068 0.0472

6 0.6028 0.6215 0.0187 0.0811

7 0.6503 0.6872 0.0369 0.0844

8 0.7004 0.7452 0.0448 0.0949

9 0.7707 0.7964 0.0257 0.096

10 0.8269 0.8416 0.0147 0.0709

11 0.8506 0.8816 0.031 0.0547

12 0.8875 0.9169 0.0294 0.0663

13 0.9359 0.9481 0.0122 0.0606

14 0. 9903 0.9757 0. 0146 0. 0398

15 1.0000 1.0000 0.0000 0.0097
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the statistical tables [R0H76, p. 661], D15  2 0.266.

The observed value D =0.096 is less than the critical

value 0.266 and hence we accept the null hypotheses of

Equation (2.76). Thus we conclude that at 5% level of

significance the model

Ptr(t)-y} - {1 3 4 8 (1o- - l- .1 (- 1348(1-e 01 2 4 t

_ {e

can be considered to provide an adequate fit to data

set DSl.

To further check the adequacy of fit, we compute

95% confidence bounds on G(tth From Equation (.75),

these bounds are given by

H(t. - D 15.0 G (t.) < H(t.) + D15.'

From the statistical tables, D 0.366 and hence

the 95% confidence bounds are given by H(tion 0.366.

A plot of these bounds and the fitted values are shown

in Figure 2.7.
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2.8.4 Confidence Regions for (a,b)

To get an appreciation of the variability in the

estimated values of a and b, we now construct confi-

dence regions for (a,b). Such regions are given by

Equations (2.59) and (2.60). For a .05, the 95%

joint confidence region will be the solution of the

* following equation:

InL(a,bly,t) Z nL(a,bly,t) 12

where

A15 15
ZnL(a,bly,t) I-' (yi-yi_1)Pn(1348) + E y-il

.124ti -.124t.i 15
9. n(e -e 1)-E In{ (Yy .1 fl1

-.124t1
-1348 (1-e 15

Data y1 t)y 2 t)..( 1 t 5)were given in Table

2.5 and

2
=0.103
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A plot of this region is shown in Figure 2.8. From this

plot we see that, even though the most likely values of

a and b, based on the data, are a = 1348, b = 0.124, the

true values can vary over the entire region contained

in the 95% contour. Values a = 1450, b = 0.11 will be

acceptable (with 95% confidence) and so will a = 1250,

b = 0.14. 50% and 75% confidence regions are also shown

in Figure 2.8 and can be similarly interpreted.

2.8.5 Variance-Covariance Matrix for (a,b)

The variance-covariance matrix is useful in quanti- 
€ 9"

fying the variability in the estimated parameters and

is obtained from Equations (2.50), (2.54), (2.55), and

(2.56) by substituting a = a 1348, b = = 0.124, and

the actual data values from Table 2.5. For data set DSI,

we get

(2368 -0.2071

coV = .l

-0.2071 5.554 xl0

From this we have
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°7-

Standard Deviation (a) B/-ara = 48.66

Standard Deviation (b) Var 0.00745

Correlation Coefficient (a,b) P^
a,b

-0.2071 = -0.571

(2368) (5.554 x 10- )

2.8.6 Number of Remaining Errors

One useful quantity is the estimated number of re-

maining faults or errors in the system after some time

t. This value is obtained from Equation (2.19) as

E{N(t)} a-e

or -

E[N(t)) = 1348e 0 12 4t

A plot of this quantity is shown in Figure 2.9.

As expected, this value decreases with time. Also shown

is a plot of the "actual" number of remaining errors
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which is based on the assumption that all the errors

were detected during 36 weeks of operation. It should

be noted that this assumption is made for illustration

purposes only and, in general, this may not be the

case.

It would also be interesting to compute confidence

bounds on EN(t). Such bounds can be easily computed as

follows.

Let f(a,b) denote EN(t). Then, it is well known

[ROH76, ROU731 that 100(1-a)% confidence bounds for

f(a,b) are given by

{f(a,b) ± tn2; V(i(ab)) , (2.83)

where g

af

V(f(a,b)) = (2-)cov 2 (2.84)

"f

a=a, b=b

and tn2;/2 is the upper 100(a/2) percentage point of

the t-distribution with (n-2) degrees of freedom.
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The 90% confidence limits for E{N(t)} for data set

DSl are computed from the above equations and are plot-

ted in Figure 2.9.

2.8.7 Software Reliability

As mentioned in Section 2.4, software reliability

is a commonly used performance measure to assess how

reliable the system is at various times. To compute

software reliability, we use Equation (2.36) and get

^ a (e-bSe-b (s+x))

R s (xs) sRX k ISk_ 1l

This gives the reliability after time x starting from

the current time s. For example, starting from s = 15,

the reliability after 0.04 weeks, i.e., at s+x = 15.04,

is

R(0"0 js=15) = e_1 3 48 (e .124)15 (.124) (15.04))

or

R(15.04) = 0.354.
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To see how reliability varies with time, a plot of

R(xls=15) is shown in Figure 2.10.

To obtain confidence bounds on reliability, we use

a procedure similar to the one used for getting bounds

on E{N(t)}. Let g(a,b) represent R(xls=15). Then the

confidence bounds are given by

{g(a,b) tn2;/2 V(g(a,b))} , (2.85)

where

v g(a,b)) - .2 l (2.86)
aab cov a(

()b

a=a

b=b

90% confidence bounds computed from these equations for

the given data are shown in Figure 2.10.

Analyses similar to those for data set DSl were

undertaken for data sets DS2, DS3, and DS4 of Table 2.5.

A summary of the results is given in Table 2.7.

2-75



1.0 I

A a 1348

0.8

0.6 90% UPPER BOUND

0.2-

Co~~~ 90 OE9ON

02-2

0 1 - - -



TABLE 2. 7

A SUMMARY OF DATA ANALYSES

a:tt yDaaSe. DS1 DS2 053 054

a1348 1823 3958 3446

b0.124 0.112 0.0768 0.0771

JIa/r (a)' 48.7 62.2 147.3 136.6 .

.f7b) 0.00745 0.00643 0.00460 0.00492

P a,b -0.571 -0.648 -0.8S6 -0.855

Estimated Number of Remain-

ing Errors at the end of 209 338 1212 1050

Operational Demonstration

Number of Errors Detected

During Nine Months of 198 263 540 475

Operation
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2.9 ANALYSIS OF FAILURE DATA FROM COMYMAND AND ...
CONTROL SYSTEMS

FIn this section, we analyze software failure data

from two real-time command and control systems, SYSI and

SYS2. These data sets were reported in [MUS80] and

represent failures observed during the system test phase.

The number of delivered object instructions for SYS1 was -*

21,700 and for SYS2, 27,700. The number of programmers

for SYSI and SYS2 was 9 and 5, respectively.

For the first system, a total of 136 failures were 'Asp

observed over 25 hours of execution time and for the

second system, the number of failures was 54 over 31 hours

of execution time. The observed number of failures per

execution hour and the cumulative failures are given in

Table 2.8. The number of failures per hour are plotted

in Figures 2.11 and 2.12, respectively. The parameters

a and b were estimated using Equations (2.65) and (2.66)

of Section 2.5 and are

SYSl a = 142.32 b 0.125

SYS2 a 56.81 b= 0.097

S
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TABLE 2.8

FAILURES IN ONE HOUR (EXECUTION TIME) INTERVALS

AND CUMULATIVE FAILURES

SYSi SYS2

Hour No. Cum. No. Cum.

1 27 27 10 10
2 16 43 6 16
3 11 54 4 20
4 10 64 5 25
5 11 75 2 27
6 7 82 1 28
7 2 84 1 29
8 5 89 1 30
9 3 92 0 30

10 1 93 1 31
11 4 97 3 34
12 7 104 7 41
13 2 106 1 42
14 5 il 0 42
15 5 116 0 42
16 6 122 0 42
17 0 122 0 42
18 5 127 4 46
19 1 128 0 46
20 1 129 1 47
21 131 1 48

* 22 1 132 0 48
23 2 134 1 49
24 1 135 1 50
25 1 136 1 51
26 0 51
27 1 52
28 0 52
29 1 53
30 0 53
31 1 54
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The fitted models for the mean value function are:

SYSI m(t) = 142.32(1 - e 0 " 125t)

_-o 097t
SYS2 m(t) 56.81(1 - e

Plots of the observed cumulative failures and expected

failures (m(t)) are shown in Figures 2.13 and 2.14 for

SYS1 and SYS2, respectively.

Observed number of remaining errors and expected

number of remaining errors were computed from (a-N(t))

and a.ebt respectively, and are plotted in Figures

2.15 and 2.16 for SYS1 and SYS2, respectively. The 90%

confidence bounds for m(t) and E(N(t)) are also in

Figures 2.13 to 2.16. From a study of these plots, it

appears that the fitted models fit the data very well.

Expressions for software reliability for the two

systems are obtained from Equation (2.36) as

-125(25) -.125(25+x)}
R(xls=25) = e- 4 2 3 2 {e- 2 e

and

Rijs =-.097(31) -.097(31+x)1}.o ~~R(xls=31 ) =e-568{
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Plots of these reliability functions for SYSI and SYS2,

along with 90% confidence bounds, are given in Figures

2.17 and 2.18, respectively.

. -v
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2.10 ANALYSES OF VARIOUS TYPFS OF ERRORS FROM A
REAL-TIME CONTROL SYSTEM

In this section, we study the failure data from a

real-time control system for a land-based radar system 0

developed by the Raytheon Company [WIL771. It was de-

veloped in a modular fashion (a total of 109 modules)

and nearly all modules were written in JOVIAL/J3.

(JOVIAL/J3 is the standard programming language for Air

Force Command and Control Applications.) The rest of

the modules, chiefly the Executive program, were written

in Assembly language. The whole system has a total of

86,780 lines and 49,900 Assembly lines of code. The

software system runs in JOVIAL, Raytheon's multiproces-

sor computer which consists of two identical processors

(one utilized as a CPU and the other as an I/O control

unit), and 81,920 words of 24-bit core memory. The

software operates under the control of a highly central-

ized modular Executive program which supervises all real-

time activity on both the CPU and IOCU. The software

system features a common data base whose overall layout

is defined by means of a COMPOOL. During compile time,

the JOVIAL compiler creates the necessary linkages for

operational programs to gain access to the data base.
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Testing of the software system proceeded in three

phases: unit testing of individual program modules, in-

cluding the Executive program; integration (build) test- -

ing; and operational testing of the system in the field.

Unit testing was carried out on a Digital System simula-

tor rather than on the live computer in order to take

advantage of the simulator's extensive debugging tools.

On the other hand, integration testing, whose chief pur-

pose was to check out control and data interfaces among

program modules, was done on a real machine. Finally,

operational testing was performed on a series of in-

creasingly demanding missions designed to exercise the ,

system and evaluate its response under various loads

and physical environments. Operational missions were

first rehearsed in conjunction with a mission simulator,

then performed with a full hardware complement under

actual field conditions.

6e

2.10.1 Error Data

Integration testing was responsible for the largest

number of Software Problem Reports (SPR's). The SPR

forms were filled by anyone (systems analyst, programmer,

or user of the software). SPR's were generated as soon
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F .... IF

as an error (problem) was identified and were not de-

layed until a solution was devised and tested. The

error data set used in validating the NHPP model was F-r

derived from the SPR's only during the acceptance and

operational testing over a 22 month period during 1974-

1976. The data for the entire 38 month period will be r

analyzed in Section 3.

The error data was categorized according to the

seriousness of the error as well as according to the

type of error as follows.

Seriousness of Error p

(1) Critical - if the error is impeding the pro-

ject development;

(2) Low - if it is not really necessary for a

correction to be made for the current develcp-

ment to proceed;

(3) Improvement - if it is a suggestion for im-

provement but not necessary for satisfactory

operation;

(4) Medium - of medium severity.

The number of errors for this classificdtion is

given in Table 2.9.
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Type of Error I

Category Description of Error

A Computational

B Logic

D Data Handling

L User Requested Changes

M Preset Data Base

P Recurrent

E Others, such as operating system/
support software error, routine/
system interface errors, user in-
terface errors, unidentified
errors, etc.

The total number of errors for these categories are

given in Table 2.10.

Using the model and estimation technique of Sections W

2.2 and 2.5, respectively, the estimated values of a and

b were obtained and are also shown in Tables 2.9 and 2.10

for each category of errors. Thus, for critical errors

the estimates are a = 73 and b = 0.067 and the fitted

NHPP is

-e
' 067t{7(-. 0 6 7 t )  73Y1e
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y = 0,1,....1
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Since the observed number of critical errors in 22

months is 56, this model indicates that 73-56 = 17 cri-

tical errors are still remaining in the system.

Plots of the actual and fitted values of the number

of errors for each category are given in Figures 2.19 to

2.22, respectively. Comparing the actual and fitted

curves, the NHPP model seems to provide a satisfactory

description 'f these errors.

S04
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2.11 ANALYSIS OF FAILURE DATA FROM THE APOLLO PROJECT

Now we analyze the failure data from an on-board

Apollo space flight software project developed by the

Charles Stark Draper Laboratory, Inc. [RYD77] during

the years 1967 to 1971. This software, with a size of

83,866 words, runs on the Apollo Guidance Computer (AGC)

(designed by MIT/IL) which was used throughout all the

Apollo, Skylab, Apollo-Soyuz, and F-8 Phase I programs.

The purpose of the AGC was to compute guidance, target-

ing, navigation, and connrol functions for the Apollo

space vehicle for all mission phases.

This software was developed by a group of guidance,

navigation, and control engineers, programmers, and test

engineers. The coding was done both in the assembly

language of the AGC and in the interpretive language

(INTERPRETER) developed for the project.
SSO

Testing and verification at the laboratory were per-

formed using various facilities, including engineering

simulation in the host computer, full scale digital simu-*
lation on the host computer, and a hybrid laboratory and

system test laboratory that provided real-time execution.

Several levels of testing were performed:
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Level 1 tests were high order language programs

run on the host computer to test algorithms.

Level 2 was the AGC counterpart of these programs.

Level 3 was intended to verify the operation of a

complete program or routine including crew

interface and realistic physical environ-

ment models.

Level 4 testing was intended to verify mission phases,

e.g., ascent, redezvous.

Level 5 repeated the level 4 tests on the final rope

which was released for manufacture.
" 0

Level 6 took place after the ropes were released

for manufacture and were intended to veri-

fy the program using actual mission data

and the flight time-line.

The hybrid and system test laboratories were exten-

sively used in parallel with digital simulation for

level 3, 4, 5, and 6 tests. Levels 1 and 2 were perform-

ed exclusively on the digital or engineering simulators.

Changes to the software (as a result of software

errors) were controlled by the following documents:

- Program Change Request (PCR)

- Program Change Notice (PCN)
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Anomaly Report

- Assembly Control Board Request

The error data set which was derived from these documents

was categorized according to types and is summarized in

Table 2.11.

The estimates of the model parameters for each cate-

gory and the total were obtained by the method of Section

2.5 and are given in Table 2.11. The likelihood surface

'0 (for total errors) is shown in Figure 2.23 and a plot of

the contours of this surface in the (a-b) plane is given

in Figure 2.24. From these figures, we note that the

surface is really well behaved.

Plots of the observed and estimated total number of

failures over the 35 month period are shown in Figures

2.25 and 2.26, respectively. Again, a comparison of the

two sets of figures indicates that the model provides an

excellenL fit to the data.
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2.12 ANALYSIS OF DATA FROM A LARGE AVIONICS REAL-TIME
SYSTEM

The software from which this error (failure) data

is taken is a large avionics real-time system for DOD

developed by the Boeing Aerospace Company [FR177]. It

consists of 40,640 lines of JOVIAL/J3B instructions and

84,065 assembly language instructions. This system was

not developed in modular fashion.

The whole system consists of a controls and displays

subsystem, a hardware test monitor, two system functions,

and an executive system which schedules the former func-

tions. The software consists of 5 major functional areas

in the operational software and two functional areas in

the simulation software. The software was designed so

that, if one Avionic Control Unit breaks down, the sys-

tem can still provide the basic functional capabilities.

The simulator, which runs on two separate computers,

allows testing to take place in the laboratory.

Testing of this software began with Module Verifi- 0A

cation Testing (MVT) performed by each modules developer.

No Software Problem Reports (SPR's) were issued during

MVT because, as far as configuration management is con-

cerned, the software was not released yet. Upon comple-
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tion of MVT, the developers released the modules for

formal testing. Formal testing began with Inter-Module

Compatibility Testing (IMCT) where the software was

checked against its functional requirements as a total

unit. Upon completion of IMCT, the software development

group gave the software system to an independent system

test group for System Validation Testing (SVT) where

acceptance testing for quality control purposes was per-

formed. When an error was discovered during testing,

the usual procedure was to patch the program. Software U

errors were documented on software problem reports (SPR)

while requirement errors were reported on Design Change

Requests. The data set obtained for this analysis was S

from the two formal test phases and was both from the

operational and simulation software for the first two

versions (called blocks) of the software system.

Time to fix an error was calculated based on the

number of days an SPR was open and an assumed 8 hour/

day of equipment use to fix. This 8 hours was divided

up among the errors open on any one day, and this frac-

tional time was summed up over the days the SPR was

open, to give the final total time spent fixing an

error.
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The error data set for the analysis was collected

during the period October 1974 to August 1975 on a

monthly basis. The errors were categorized into the

following groups: -

(1) Critical

(2) Low

(3) Improvement

(4) Medium

(5) Other

The total number of errors for each severity level r ,

over an eleven month period and the corresponding esti-

mated values of a and b are given in Table 2.12. Plots

of the observed and fitted number of errors are shown lip

in Figures 2.27 and 2.28, respectively. Again, the model

appears to provide a very good fit to the failure data.

P *l
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TABLE 2.12

NUMBER OF ERRORS BY SEVERITY

Severity Total Errors a b

1. Critical 28 33.40 0.1657

2. Low 51 63.20 0.1495

3. Improvement 211 260.02 0.1517

4. Medium 357 501.99 0.1129

5. Other 780 1031.43 0.1283

TOTAL 1427 1880.71 0.1293
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SECTION 3

SOFTWARE FAULT OCCURRENCE PROCESS WITH

INCREASING/DECREASING ERROR DETECTION RATE

3.1 INTRODUCTION

As discussed earlier, many stochastic models have

been developed during the past ten years to describe the

fault occurrence phenomenon in a large scale software

system. Most of these models are based on the assumption

that the time between system failures follows an exponen-

tial distribution with a parameter that depends either on

the number of faults remaining in the system or on the

elapsed executioo or calendar time. A summary of these

models and a comparative list of the features of some of

these models was given in section 1.5.

All the models that have been proposed to date make

an important assumption about the monotonicity of the

software failure rate. In particular, it has been assumed

that the software system experiences an improvement with

time. In other words, the existing models assume that

the software has a decreasing failure rate (DFR). However,

in practice, it has been observed that many software sys-

tems first experience an increasing failure rate (during

3-1
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the initial phases of integration) and then follow a de-

creasing failure rate.

In this section we develop a new model which incor-

porates this dynamic behavior of the software systems.

The basic model is presented in section 3.2 and various

software effectiveness measures are developed in section

3.3. Software reliability and related results are given

in section 3.4. Methods for estimating the parameters

of the model from software failure data are described in

section 3.5. Analyses of software failure data from a

large scale system and the Naval Tactical Data System are

presented in sections 3.6 and 3.7, respectively.

Data sets from numerous other systems were analyzed

to assess the applicability of this model. Also, goodness-

of-fit tests were conducted following the method discussed

in section 2.6. Details of these analyses and tests are

not reported here for the sake of brevity. In all of the

cases studied the model reported here was found to proviCe

an excellent fit to the observed failure history.
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3.2 MODEL DEVELOPMENT

In order to develop an appropriate model, we study

the stochastic behavior of the fault detection phenomenon .

by focusing our attention on the number of faults detect-

ed by some arbitrary time t. Let N(t) denote the number

of faults detected by time t and let m(t) be the expected -

value of N(t), i.e.,

m(t) = E[N(t)] . (3.1) -

The above function m(t) is called the mean value function

of the N(t) process. It should be pointed out that here -

time t can be calendar time, execution time, or any other

suitable and consistent measure of time. In practice,

however, we have found calendar time and CPU time as the

commonly used measures.

6 3.2.1 Assumptions

We now consider the behavior of the software fault

detection process as described by N(t).

(i) There will be no faults detected at the begin-

ning of the fault detection process, i.e., we

3-3
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have N(O) = 0. Also, this implies

m(O) 0. (3.2)

(ii) It is quite obvious that the software system

must contain a finite number of faults. In

other words, if testing were to be continued

indefinitely, the number of faults to be de-

tected will be finite, so that the expected

number of faults to be eventually found will

be m(-). Let

m(co) = a < w. (3.3)

(iii) The faults to be detected are such that each

one effects the failure occurrence phenomenon

independently of others, but the rate at which

each fault causes the system to fail depends

on elapsed time. This can be expressed by

taking the hazard rate z(t) of each fault to

be

z(t) = bctc-l. (3.4)
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Note that the shape of this function will de-

pend on the values of the parameters b and c.

3.2.2 Expression for m(t)

Based on the above description of the fault detec-

tion process, we now develop an expression for m(t). In

terms of m(t), the hazard rate at time t is defined as

- m(t+At) - m(t)z(t) - At{a-m(t))

Substituting foi z(t) from Equation (3.4), we get

m(t+At) - M(t) c-1
At=a-m(t) bct -  (3.5)

By letting At - 0 in the above equation, we get a first-

order linear differential equation

m'(t) + bct C-m(t) = abct c -  
. (3.6)

* V

To solve the above equation for m(t), we need to

use the following results.
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Lemma. If P(t) and Q(t) are two continuous functions

of t, then the general solution of an equation of the

form

y' + P(t)y = Q(t) (3.7)

is

1 h)Q (t)h (t)dt, (3.8)

where

U

h(t) = efP(t)dt (3.9)

e6

Proposition. Under the boundary condition m(O) = 0,

the solution of equation (3.6) is given by

m(t) = a(l-e - ) . (3.10)

Proof. Let the functions P(t) and Q(t) in the above

Lemma be

3-6
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P (t) =bct'l

and

Q (t) =abctC

Then h(t) is obtained from (3.9) as

4 h(t) -efP(t)dt

or

h~) btC (3.11)

and

fQ(t) h(t) dt f fabctc ebtdt

or

f (t) h(t) dt =aeb + k ,(3.12)

where k is a constant to be determined by the boundary

condition m(Q) =0. Finally, we get the solution of
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.............

(3.6) by substituting (3.11) and (3.12) into (3.8),

" i.e.,

e-bt c (aebt c +m(t) = e ae + k)

or

m(t) a + ke - bt (3.13)

Since m(O) = 0, we have

m(O) = a + k = 0

or

k -a

* Substituting k -a in (3.13), we get the result of

Equation (3.10).

3.2.3 Fault Detection Rate

Fault detection rate is the number of faults per

unit time. Let X(t) denote the software fault detec-
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tion rate so that, for a small time interval At, X(t)At

represents the number of software faults detected during

(t, t+At). Now m(t) is the expected number of faults
r .....

detected by t and

X(t) =m' (t) .(3.14)

r u•

From Equations (3.10) and (3.14), we get

abtcr btCct c- 1

x(t) = r c

or

(t) = t • e - t  (3.15)

p o
where

= abc

1 0
S= b (3.16)

y =c

p V
In order to see the shape of the fault detection rate

X(t), we differentiate Equation (3.15) with respect to

t and equate the result to zero and get
Ip
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t _ -1. (3.17)8
Y

We see that, for r > 1, X(t) is a unimodal function

with

(0) = X(') = 0

and its maximum value occurs at t = tm where

mm=(-l,1 1/y.
t m  --- j (3 .1 8 )

The maximum value of X(t) is

(7-,_ ; 7- )/7 -( -l /y-. .3

maxX (t) E X(t m) = ((1) A e(Y) /Y. (3.19)
m oy

In other words, the error detection rate of software or,

equivalently, the software failure rate, increases dur-

ing the period (O,t) , achieves its maximum value i(t M )

at t = tm, and then decreases for t > tm eventually be-

coming zero at t = . Note that if 0 < y < 1, then the

software failure rate is monotonically decreasing. From
SI 3

the above discussion, we see that the software fault de-

tection rate X(t) is increasing/decreasing if r > 1, and

monotonically decreasing if 0 < y < 1.
p W
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The extreme values are Ai0) = a for y = 1 and X(0) =

for 0 < y < 1.

3.2.4 Failure Counting Process

Now we assume that the failure counting process N(t)

has the following characteristics:

(i) N(t) has independent increments, i.e.,

{N(t 2 ) - N(t) } is independent of

{N(t 3 ) - N(t 2)} for some tI < t 2 < t3*

(ii) The probabilities associated with the N(t)

process are as follows: U

0 with probability
i-X(t)At + 0(At)

N(t+At) - N(t) = 1 with probability (3.20)
X(t)At + 0(At)

2 with probability
0(At)

It is well known that with the above properties and 'with

X(t) as given in Equation (3.15), the N(t) process is a

non-homogeneous Poisson process (NIIPP) with a mean value

function m(t) given in Equation (3.10). Hence, the dis-

tribution of N(t) is given by
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{m(t) }Y -m(t) ---
P{N(t) = y =my! e . (3.21)

Under the assumptions discussed above, the stochastic

behavior of the software failure phenomenon can be com-

pletely described by the model given in Equations (3.10)

and (3.21). These equations constitute the basic fail-

ure occurrence model discussed in this section.

I0
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3.3 SOFTWARE EFFECTIVENESS MEASURES . -

In this section, we develop expressions for several

useful quantitative measures for assessing the software

system effectiveness.

3.3.1 Distribution of the Number of Faults Detected
or Failures Observed ..

As indicated above, N(t) is a NHPP with a probability

mass function

btc )1 bt x
{a(l-ebt c )}Y e-a(l-e

P{N(t) = y y!

y = 0,1,2,... (3.22)

As t , we have

ay  -a
P{N(-) = y} y e , y = 0,1,2,... (3.23)

This last expression tells us that, if the system were

to be used for a long time (t = c), the number of faults

detected or failures observed during this time follows

a Poisson process with mean 'a'.
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3.3.2 Number of Faults Remaining in the System

Let W4(t) denote the number of faults not detected

by time t, i.e., the number of faults remaining in the

system. Clearly, this number will be obtained by sub-

tracting N(t) from N(-), the number of faults to be

eventually detected. Note that these quantities are

random variables. Thus, we have

9(t) = N(-) - N(t) (3.24)

and

- 01

E[N(t)] = E[N(w)] - E[N(t)]

or

c
'. _ l ~ e b t C

E[N(t)] = a - a(-e-

or

_btc
E[N(t)] = ae . (3.25)
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3.3.3 Conditional Distribution of i(t)

If we have already observed y faults, it is useful

to know the distribution of the number of faults yet to

be detected. In other words, the conditional distribu-

tion of K(t), given that N(t) = y, is

P{N(t) t) = y} P{N(t) = x, N(t) Y (3.26)

= N~t)P{N(t) = y}

Now the event N(t) = x denotes occurrences over the time

interval (t,-) while the event N(t) = y denotes occur-

rences over the interval (O,t), i.e., these two events

represent non-overlapping time intervals. From a basic

property of the NHPP process, such events are independent

of each other, so that we have

PxT(t) =xN(t) = y} P{N(t) x}, x=0,1,2,... (3.27)

or

P{N(-) - N(t) = xIN(t) = y} =

{m( -M (t) }x e-{m(-)-m(t) }

Or, substituting for m(-) and m(t) from Equation (3.10),

* we get
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P{N(-) - N(t) = xIN(t) = y} =

{a-a(l-e-bt) x _{a-a(l-e-btC) -

x! e

This yields

Ia-btC x -btc
P{N(t) = xIN(t) y} = x! -ae (3.28)

Finally, the expected number of faults to be detected, 0

given N(t) = y, is

E[Ti(t) IN(t) = yj = ae -btc• (3.29) 6

3.3.4 Joint Counting Probability

The property of independent increments, along with

the equations developed above, provides a complete

statistical characterization of the NHPP process so that

the joint probability of certain number of faults occur-

ring in given time intervals is obtained as follows.

Consider times tl1t2 ,...,tn such that 0 < tI < t2 <

< t . We have, with t0 = 0, Y0  0,

3-16
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P{N(t 1 ) = YI' N(t 2 ) = Y'"' 1(tn) Yn }

n
n I P{N(t) - N(t i-) =y.-y. 1,} (3.30)

n~ {m (ti)-m (ti I  } i y - - m (t i ) - m ( t i ) }
3- i-Yi -Y e

i l (Yi-Y -I)e

-1

Equation (3.30) will be used for estimating the para-

meters a, b, and c from given failure data in later

sections.

F I
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3.4 SOFTWARE RELIABILITY AND DISTRIBUTION OF TIME - S
BETWEEN SOFTWARE FAILURES

The time between failures is a stochastic process

whose behavior is governed by many factors such as the 0

usage of the system, system load, degree of purifica-

tion of software, etc. However, since it is not pre-

sently feasible to quantify the effects of these fac- "

tors individually, we model the process behavior as

described above, i.e., by a NHPP process with an in-

creasing/decreasing fault detection rate. At any given

point, the time to next failure will depend on the time

when the last failure occurred. Suppose that the (k-l)st

failure occurred at some time Sk- 1 = s. Then the prob-

ability that the kth failure will not occur for an addi-

tional time Xk = x, i.e., the conditional probability

for time x, is as follows:

P(no failure in (s,s+O lfailure at s)

= RX I Sk_l (xIs)

and
ae-bsc -b(s+x)c

- Rx i (xis) = e . (3.31)

3-1
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Since the conditional cumulative distribution function

(cdf) is related to conditional reliability by

F (xis) = 1 - RX IS (xis) (3.32)

we have

bsc -b(s+x)c
FXkI (xIs) = 1- -a } (3.33)kISk_ 1 "-l:..--.

The conditional probability density function (pdf) is r

obtained from Equation (3.33) by differentiating

F (xis) with respect to x and is given by

fx(xls) = abc(s+x) cle b(s+x)ce~aebsceb l s+x)c}kI Sk I

(3.34)

Finally, we are also interested in the joint pdf of the

cumulative times to failures, i.e., in the joint pdf of
II

Sl S2 ,...,Sn. Following the approach given in Section 2,

we get

-m(sn ) n "
f lS '' 'S (sl S ' 'Sn = e k i X (Sk) (3.35) iiiii !

l,?S2, "#'Snk=l

where
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-bsC
m (s) a a(1-e n (3.36)

and

-Y-1 k
ks a e ,(3.37)

or

x (s) abc * c- e~ (3.38)n n

These results are used for estimating the parameters

a, b, and c in later sections.
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3.5 ESTIMATION OF MODEL PARAMETERS FROM FAILURE DATA

In this section, we describe methods for estimat-

ing the parameters a, b, and c (or, equivalently, a, 8,

and y) from available data on software failures. Such

data are generally available either as cumulative number

of failures in given time intervals, or as times betweeA

software failures. The estimation procedure is differ-

ent for each case and is described below. In this re-

port, we use the method of maximum likelihood for esti-

mation purposes.

3.5.1 Maximum Likelihood Estimation When Data on
Cumulative Software Failures are Given p-*

Let yl be the number of failures observed during a

time interval (0,t1) Y2 during the interval (O,t1 ) and

so on. In general, let yi be the number of failures by

time t. Then the observed data in this case will con--

sist of apirs (tiYi), i = 1,2,...,n. 1Now the probability

of observing (yi-yi_l) failures during a time interval

(ti-t i_) is given by (see Equation (3.30)),

P{N(ti)-N(ti-1 )  yi-Yi--1

(3.39)}iyi-i 1 .l""
{mt i )-m(ti  {-mlt i )-m t

H e( yiY _ )  ,
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IW
since the increment in the number of failures during

the non-overlapping time periods (O,t1) (t1 t).,

(t Iiti)i***i(t ni't n ), are independent of each other,

the joint probability of the pairs of observations

(t1 y) (t2I2 I*1(nYn P{N(t)= y1, p N (t2) =2

..."~t = yi.... ,N(t n) =Yn1 can be written as

P{N(t)= yl1, P{N (t2-tl) =2y1 .

P{N(t.-t.
1 i-1) 11--11

P[N(t _t) = n-l 1
i

n
= 1 P[N(t.-t~1  = i-i-l 1

n

)IyI-i-l -E {m(t.i)-m(t )}1n fm(t.)-m(t ) ~ -
i1 ( i-_l)

or

P{N(t)= ylN(t 2 ) Y2 y -1 ..,Nt) = In

- I e n (3.140)
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From this, the likelihood function for parameters

a, b. and c, corresponding to the observations ( 0

1 1 ,2,...,n,, is obtained as

L(a,b,cI (t1,y),(t2,y)I..., (t ly)

yi-yi-l

1=1 e .(3.41)

Taking-the natural logarithm on both sides of Equation

(3.41), the log likelihood is obtained as

E(a,b,cI(t.,y)pi=1,2,...,n) kn L(a,b,cI(t.,y)I

nn
M-( 1 In -il~l(.2

n

On substituting for m(t. )M(t.) and m(t )from Equa-
1 n

tion (3.10), and simplifying, the log-likelihood function

becomes
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I t(a,b,cj (t1 y) i =l2..n

C C

(yi-yi.).n{a(e e.e-bt n :..
i=l

hbth
- a(l-e ) - £n(yi-yi_) !  (3.43)i=l-" '."

It is well known that the maximum likelihood esti-

mates (mle's) a, b, and c, are those values of a, b,

and c, respectively, that maximize the likelihood func-

tion given in equation (3.42), or equivalently, are

those values that maximize the log likelihood function

of Equation (3.43). Thus, a, b, and c are those values

that simultaneously satisfy the following equations:

Ta- (344)

a 0 (345)

=.0 .,-;.4..

ab

= 0 . (3.46)

On taking the derivatives of Equation (3.43) with re-

spect to a, b, and c, and substituting in Equations

(3.44), (3.45), and (3.46), respectively, we get the

3-24
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following non-linear simultaneous equations:

C_btn
=n a(l -e ),(3.47)

(et -e)

-bt n yi-bt
a tt n )e n 8

i~btC . btt

(ee il-

n- n

(3.49)

The set of simultaneous equations (3.47), (3.48), and

(3.49) can be solved numerically for a, b, and c. The

solution will be the required maximum likelihood esti-

mates a, b, and c of a, b, and c, respectively.

AP-

.3-25
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3.5.1.1 Variance-Covariance of a, b, and c

Once the estimates of a, b, and c have been obtain-

ed from the data, the performance measures, as derived

in sections 3.3 and 3.4, can be easily computed by sub-

stituting a, b, and c for a, b, and c, respectively.

In order to obtain confidence bounds on the performance

measures, we need to know the distribution of the esti-

mates a, b, and c. For a reasonably large sample size

n, say n > 20, the maximum likelihood estimators general-

ly follow a normal distribution. Thus the vector (a b c)'

will have a trivariate normal distribution (TVN) with

(a b c) as the vector of means and E as the variance-ov
covariance matrix. In other words, for large n, .

b ' TVN ( ) (3.50)

The variance-covariance matrix E represents
coy

Var(a) Cov(a,b) Cov(a,c)\

'cov = Cov(b,a) V(b) Cov(b,c) (3.51)

Cov(c,a) Cov(c,b) V(C) /
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and is given by

rr r
aa ab ac

rcv=~ rb r , .(3.52)

where

2
j -E[ a jitj= a, b, c (3.53)

Thus, to obtain Z we first take the derivates of

Equation (3.43) and then the expectations of the result-

ing expressions, ad indicated by Equation (3.53). On

so doing, we get the following expressions for various

'.5, i~j a, b, c.J

n -bt. -bt. *
raa=a (e -l-e 1)(3.54)

-btc
ra =r =tc e n(3.55)

ab ba n

~bc

ra = rc = bt~ (.tnt~ )e n(3.56)
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2c C

bb ni~l bt i-i t
e -e

cbc

= a~ ntbtit nt 1 -bt .. -bt ~ bt.

1-1e -e

-btC -btC -bt
-(1-bt'?)(e e ) + a(1-btC )tc (intn )e

(3.58)

and

-bt. btC
n b(1-bt' 2 [t?(Int )e 1-ta- (Xnt )e- 1- 2

r =ab Ei 1' 1 -bt 1  1b~ i-i .i
1=1 .. 11

e -e

4 n 2-bt? -bt?_
-ab Z (1L-bt 1 )[t.(Int) e t-tj (Lnt. e

-ab (1-bt) )tc (Int) 2 btn 3.9
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The variance-covariance matrix E-co v is obtained by sub-

stituting the appropriate values from Equations (3.54)

to (3.59) into Equation (3.53). Confidence bounds on

* the performance measures can then be computed by using

the properties of a trivariate normal distribution.

3.5.2 Maximum Likelihood Estimation of Parameters When
Data on Times Between Software Failures are Given

Sometimes failure data are given as a sequence of

failure times slS2,...,sn where sk, k = 1,2,...,n, rep-

resents the time of the kth failure. Using the joint

density of SIS 2 ,...,S n , as given in Equation (3.35),

the likelihood function of a, b, and c for given data p- .

lS2,...,PS n is

L(a,b,clsls 2 ,...,s n )

-a(1-e nc- 1 kb ' ' -'"=ea len) (abc){sk  e } (3.60)

k=l

As before, the maximum likelihood estimates are

those values which maximize the likelihood function of

Equation (3.60). Since maximizing the likelihood is

equivalent to maximizing the log-likelihood function,

we take the natural logarithm of Equation (3.60) and

get ,<*
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2(a,b,cjs 11s21 .,n kn L(a,b,clsissn

n
=n9na +nknb +nknc + (c-1) E kns k

k=l

n c bsC
-bE s -a(1-e fln (3.61)

k=l

Then, the mie' s are those values a, b, c which satisfy

the following equations:

0 (3.62)

0 ,(3.63)

=0 .(3.64) 40

On taking the derivatives of Equations (3.61),

* (3.62), (3.63), and (3.64), respectively,

C
~bn

n =a(l-e ),(.3.65)

n c b s n
n = Zs~ k ase n e (3.6G)

k=1

and
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n n -bsc- ...
n + ckZ nsk = bc{i ScnS + asC (ns )e n (3.67)

k~ k~k k n n

The above simultaneous, non-linear equations can be

solved numerically to get the maximum likelihood esti-

mates a, b, and c.

Since the joint distribution of (SIS2 ,...,Sn) is

an improper distribution, as discussed in section 2,

the asymptotic properties of the mle's do not hold in .

this case.
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3.6 ANALYSIS OF FAILURE DATA FROM A LARGE SCALE
SOFTWARE SYSTEM

Failure data generated during formal testing of a

large scale software system [THA76] was analyzed in

section 2.8 using a two parameter non-homogeneous Poisson

process model. In that analysis, the data from the

first 9 of the 24 weeks of testing had to be dropped

because during this period the system exhibited an in-

creasing failure rate. The model developed in this

section is capable of modelling an increasing/decreas-

ing failure rate and will be employed to develop a

model for the failure data over the entire 24 week .

testing period.

The number of failures per week for the four data

sets are given in Table 3.1 and a plot for data set DSl

is shown in Figure 3.1. It is readily seen that the

failure rate increases for about the first nine weeks

and then decreases until the end of testing.

3.6.1 Estimation of Parameters

The data are given in the form of point (tiy i),

i = l,2,...,24, where ti and yi refer to time in weeks . -

and yi is the number of failures in week i. To esti-
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Fig. 3.1 A plot of the observed number of failures per week for Data Set DSl
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77 76 77- 7

mate the parameters a, b, and c, we use the method of

section 3.5.1 and substitute the data values for each

set in Equations (3.47), (3.48), and (3.49). The esti- -

mates a, b, and c for the four sets are given in Table

3.2. and the fitted mean value functions for the four

data sets are as follows

1.494
DS1 : m(t) = 2352 (1 - e- '02 3 2 t l )

1.540
DS2: m(t) = 2873(1 - e 0 1 8 2 t

1.547

DS3: m(t)= 5182( - e- '0 1 3 5 t

A -.01. 5 05

DS4: m(t) 4657(1 e- 0156t

A plot of the cumulative number of observed soft-

ware failures is given in Figure 3.2 and the expected

cumulative number of failures (m(t)) for each data set

are shown in Figure 3. 3.

It
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TABLE 3.2

A SUMM4ARY OF DATA ANALYSIS FOR DSI-DS4

Z tty atae DS1 DS2 DS3 DS4

a 2352 2873 5182 4657

b,0.0232 0.0182 0.0135 0.0156

C1.494 1.540 1.547 1.505

V ri55.4 65.3 118.0 110.5

fV ar~ 0.00188 0.00143 0.00086 0.00101

/VarT() 0.0354 0.0345 0.0297 0.0304

~ab0.184 0.224 0.286 0.273

p -0.320 -0.391 -0.584 -0.579a,c

P-0.916 -0.914 -0.876 -0.868b,c

Number of Errors Detected k w
(Observed) During Operation- 198 263 540 475
al Demonstration Period

Estimate of the Number of
*Errors to be Detected Dur- 16258277ing Operational Demonstra- 16258277

tion Period
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FIGURE 3.2. Plots of the Cumulative Number of
Software Failures for DSl to DS4.
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FIGURE 3.3. Plots of the Expected cumulative Number of
Software Failures (m(t)) for DS3. to DSL4.
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3.6.2 Confidence Bounds

By using normal approximation to a Poisson in Equa-

tion (3.22) we compute the 90% confidence bounds for the

N(t) process. The estimated mean value function and 90%

bounds for data set DSl for the N(t) process are plotted

in Figure 3.4. From this figure we see that most of

the observed points fall within 90% bounds implying that

the model described in Section 3.2 fits the entire his-

tory of software errors very well. The number of re- -

maining errors at t = 24 (weeks), given that 2191 errors

were found by this time, is estimated from Equation (3.25)

and we have

E(N(24) IN(24) = 2191]= 2352e -0 2 3 2 (2 4 )
- 161.9.

Note that a total of 198 errors were detected during the

one year period of operational demonstration so that the

predicted number is close to the actual value. The V'"j

variance-covariance matrix is obtained from Equation (3.51) 7
and is

3067 0.0191 -0.627 1
£COV = [0.0191 3.53x0 6  -6.09xi0-J

-5 -3-0.627 -6.09x10 5  .25xi0
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FIGORE 3.4. Estimated Mean Value Function and 90%
Confidence Bounds for the N(t) Process
(DS1).
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From this matrix we obtain the estimated standard devi-

ations and the appropriate correlation coefficients for

a, b, and c. These values for data sets DSl to DS4 are

also shown in Table 3.2. By using the above variance-

covariance matrix we can also obtain 100(1-a)% confidence

bounds for EN(t) which are given by

{f(ab,c) ± t 3 1 2/ Var(f(a,b,c,)) }

where r

3-faf af afVar{f(a,b,c)} = b ca

(_b- "b .....o Da

ac4c. ~a=a,, -i

b=b

C=C

For this case we have

a f = e b t. . ,
3 a e.-

_atC e_bt c  " . .
af = -"-. ,

ab.. . .o .,
= abtc(nt)e-

ac
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The 90% confidence bounds for EN(t) for data set DS1 are

computed from the above equations and are shown in Figure

3.5. Also shown is a plot of the actual number of re-

maining errors during the 24 week period. From this fig-

ure we see that the actual errors fall within the 90%

bounds.

Similarly, by setting

f(abc) Ri s(xis)

ea{ebsc_ e-b(s+x) C
-le e.

we can estimate the software reliability for given de- .

bugging time s. .7.

The 100(1-a)% confidence bounds on R (xIS)
XkISk-l

can be obtained as for EN(t). The reliability plots r"S

and 90% confidence bounds for DSl are shown in Figure

3.6.
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1.0

Aa :2352
A
b =0.0232

0.8- c 1.494
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0.2-

0
24.00 24.02 24.04 24.06 24.08 24.10
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41

FIGURE 3.6. Reliability Function and 90% Confidence
Bounds (DSI).
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3.7 ANALYSIS OF FAILURE DATA FROM NAVAL TACTICAL
DATA SYSTEM (NTDS)

Failure data from NTDS were analyzed in Section 2.7

using a two parameter NHPP model. In this section we

reanalyze the same data by using the three parameter

NHPP model of Section 3.2. (For details of the system

and data set, see Section 2.7.) Data analysis using

the Newton-Raphson method for solving the likelihood

estimates of a, b, and c based on the first 26 failures

of Table 2.1, we get a = 27.2, b = 0.000783, and c =

1.50 so that

-btc '3
m(t) = a(l-e

1.5-0.000783ti.
= 27.2(1-e ) .

The bounds of the N(t) process can be obtained by using

normal approximation to a Poisson distribution of Equa- 0

tion (3.22). The estimated mean value function and 90%

bounds of the N(t) process for this data set are shown

in Figure 3.7. Also shown is a plot of the actual num-

ber of errors detected by time t. From this figure we

see that all the data points fall within the 90% bounds.

We can estimate the expected number of errors remaining
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FIGURE 3.7. Estimated Mean Value Function and 90%
Confidence Bounds for the N(t) Process
(Data Set NTDS) .
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6 at time t by substituting the mie's in Equation (3.25),

EN(t) = eb tc

or

EN(t) =27.2e
0  0 7  t

Thus for t =250,

EN(250) =1.23

That is, we can expect one more error remaining at t-

250 (days). The conditional reliability of the time to

the next (27th) failure, given S2  = 250, is computed

as

Rx~~~ IL6(150 ~e (25Oc) b(250+x)c

F rth vauso (xJ20 e 0 0 n 0(as h e

abiltye values are x0.8, 06, and 50.6 reasp tetiely.

ablt vausae08,06,ad .6Uepciey
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SECTION 4

OPTIMUM SOFTWARE RELEASE TIME

4.1 INTRODUCTION

An important objective of developing the models in

Sections 2 and 3 was to provide an analytical framework

for estimating software performance measures which are

needed for making various decisions. An important de-

cision of practical concern is the determination of the

time when testing can stop and the system be considered

ready for release, that is, the determination of the

software release time. . "."

The operational performance of a software system is "

to a large extent dependent on the time spent in testing.

The longer the testing phase, the better the performance.

Also, the cost of fixing an error is generally much less

during testing than during operation. However, the time

spent in testing delays the release of the system for

operational use and incurs additional cost. This suggests

a reduction in test time and an early release of the sys- -

tem. In this section, we consider these conflicting ob-

jectives in the determination of the optimum release time.

4-1
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In Section 4.2 we consider the release time prob-

lem based on a reliability criterion using the model of

Section 2. Cost based optimum release time policies

are developed in Sections 4.3 and 4.4 when the failure

phenomenon follows a non-homogeneous Poisson process.

The policy in Section 4.3 uses the model of Section 2

while the policy in Section 4.4 is for the failure model

of Section 3.

,5V,

' °w
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4.2 SOFTWARE RELEASE TIME BASED ON RELIABILITY CRITERION

For a non-homogeneous Poisson process failure model, r
the conditional reliability at operational time x, given

that the testing has proceeded for S = s time units, is

given by

RXIs(x[s) E R = exp[-a(e - e- b (s+x) (4.1)

or

R e-bsR = exp[-m(x)e 1, (4.2) "

where

m(x) = a(l - e - ) . (4.3)

One commonly used criterion is to stop testing when

the predicted reliability at a specified time x equals .

some given value. Then the problem reduces to solving

(4.2) to find the value of s that satisfies this cri-

terion.

Taking the logarithm of both sides of (4.2) and

rearranging yields

4-3
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s = (1/b) [in m(x) - in in l/R] (4.4)

for the software system under test. In (4.3) and (4.4),

a and b are estimated from previous data and R and x are

the specified values. Therefore, the required testing

time s can be easily determined.

For illustration purposes, consider the failure

data DSl discussed in Section 2.8. For this data set

a = 1348 and b = 0.124. Suppose it is desired that the

testing be continued until the operational reliability

at x = 0.1 equals 0.70. From (4.4),

s = (i/0.l24){nj1348(l-e-0.
1 2 4 (0 .1 ))]"

-in in (1/0.7)},

or s =31 weeks. . ]
In other words, 31 weeks of testing will be needed

before the system can be released to assure the desired

reliability. -

To see the effect of s on R(xls), plots of reli-

ability versus bs for m(x) = 5(5)50 are shown in Figure

4.1. We note that, as the testing time s is increased,

while keeping x, and hence m(x), constant, R(xls) in-

4-4
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creases very rapidly to approximately 0.95. After that,

the increase in reliability is very slow, which indi-

cates that a long testing time is required to get a

highly reliable software system.
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4.3 OPTIMUM RELEASE TIME BASED ON COST CRITERION
(MODEL OF SECTION 2)

To determine the optimal policy, we first develop

a cost model and then solve it to get the desired re-

sult.

4.3.1 Cost Model and Optimal Policy

Let

c = cost of fixing an error during testing,

c = cost of fixing an error during operation

(c2 > c1 ),

c3 = cost of testing per unit time,

t = software life-cycle length, and

T = software release time (same as testing

time).

Since m(t) represents the expected number of errors dur-

ing (O,t), the expected costs of fixing errors during

the testing and the operational phases are c m(T) and'1!

c2 [m(t) - m(T)], respectively. Further, the testing

cost during T is c3T. -.

4-7
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Combining the above costs, the total expected cost

is given by

C(T,t) C(T) = clm(T) + c2 [m(t)-m(T)] + c3 T. (4.5)

These costs are also shown in Figure 4.2.

Our objective is to find the optimum value T that

minimizes (4.5). Differentiating (4.5) with respect to

T, we get

dC(T)/dT = clm' (T) - c2m' (T) + c 3 . (4.6)

Equating the right-hand side of (4.6) with zero and not-

ing that X(T) ml(T), we get

X(T) = c3/(c2 - c1 ) , (4.7)

where

(T)= abebT (4.8)

Note that X(T) is a monotonically decreasing function of .

T and X(O) = ab. If ab < c2 /(c2 - C1 ), (4.7) has no

feasible solution and, for T > 0, dC(I)/dT > 0 (see
-- S
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Figure 4.3. Hence, for this case, the minimun of C(T) .

is at T =0; that is, T O0.

Now, if ab > c3 /(c 2 - cI), there exists a unique

feasible solution of (4.7) given by (see Figure 4.3)

(1/b) ab(c 2 - e1 ) (4.9)TO =(lb n[ c3 49
3

Since dC(T)/dT < 0 for 0 < T < T and dC(T)/dt > 0 for

T > T0 , the minimum of C(T) is at T = T for T < T and
0 0

at T = t for T > t. These can be summarized as follows.

Theorem 4.1. If ab > c3 /(c2 - 1  then there

exists a unique feasible solution of (4.7) and the opti-

mum release time is

T min{T 0 ,t}

where T0 is given by (4.9).

(ii) If ab < c3 /(c 2 - c1 ), then T = 0.

It should be noted that, if the minimur. expected

cost exceeds the operational benefit to be 'ained, no

testing should be undertaken.

4-10
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To illustrate the above results, consider the data

set mentioned in Section 4.2. Here a = 1348 and b -

0.124. Let cI = 1, c2  5, c3 = 100, and t = 100.

Then ab = 1348(0.124) = 167 and

c3/(c - cl) = 25 r S

Since ab > c2 - cl), the optimum release time

T = min{ (1/0.1214)Zn(167/25) , 100}

or

T min{15.3,i00, = 15.3
p S-

Hence, the optimum solution for this case is to allo-

cate 15.3 weeks for testing and 84.7 weeks for opera-

tion. The cost associated with this policy will be 40

C(T ) = 3687.

4.3.2 Sensitivity Analysis of T 0 W

Now we investigate the effects of the parameters

a, b, and cr -c3/(c 2 - C1 ) on the optimum release time. OP
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First, frcm Theorem 4.1, we note that T equals 0, t,

or T Since T = 0 and T = t are degenerate cases,
0*

we shall consider only the case when T = T0 .

From (4.9), we see that TO increases logarithmical-

ly with a and decreases logarithmically with c r as others

are kept constant. Next, the first and second deriva-

tives of T0 with respect to b indicate that T is a con-

cave function of b with maximum at b. ec /a, and the
r

maximum value of TO is 1/b0 .

In practice, for a given software system, the value

of a prior to testing is fixed and one may be interested

in the joint effect of b and cr on T The value of b
rV

can be affected by an appropriate selection of testing

strategies and techniques. For the data set discussed

earlier, a = 1348. For this case, contours of T in
0

the b-cr plane are shown in Figure 4.4. Also shown is

the optimum value of T corresponding to the above numer-

ical example. This diagram can also be used to deter-

mine the value of b if TO is fixed due to some other

considerations. Thus, if cr = 25, and T0 = 15, we need

b = 0.13. If, however, TO = 10, b must be 0.265.

4 w
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4.4 OPTIMUM RELEASE TIME BASED ON COST CRITERION
(MODEL OF SECTION 3)

4.4.1 Cost Model and Optimal Policy

The cost model for this case is similar to that

given in Equation (4.5) and is (quantities are as de-

fined in Section 4.3.1)

c(T,t) = ClM(T) + c2 [M(t) - M(T)] + c3 T (4.10)

where

bxc

M(x) = a(l - e ) . (4.11)

On differentiating (4.10) with respect to T and equating

the result to zero, we get

c 3
A(T) E M'(T) - c2  _ (4.12)

where

A(T) = aT -1  e e (4.13)
* V°

abc

= b

y = C

C1
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To solve (4.12) for T, we consider three cases depend-

ing on the value of y, viz y > 1, y =1, and 0 < y 1.

Case When y > 1

For this case, the failure distribution has an in-

creasing failure rate followed by a decreasing failure

rate. Then we see from (4.13) that A(T) is a unimodal

function of T with AMO) = A(-) = 0. Also, its maximum

A(T ) occurs at Tm where

Tm  - ) m(4.14)

and

A(T ) = -- l). (4.15)

c3  c
If A(T m ) < and A(T) < 3 for T > 0, then

c 2  1 - c 1

it is easy to see that Equation (4.12) has no feasible40 •

solution for T. Therefore, for T > 0, dC(T,t) > 0, and
_ dt

the minimum of C(T;t) is at T = 0. In other words, if
c 3  C3A(T < and A(T) < - I then T = 0. This

m c 2 - c1  c 2 -c 1

is shown graphically in Figure 4.5.

0 l
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C3  d -
If A(T m) = (c 2 _ Cl) ,  C(T;t) = 0 for T = Tm,

then c an fo TT > hn mii

then T-C(T;t) > 0 for 0 < T < T andforT>T. Then

Equation (4.12) has a unique feasible solution T = Tm"

However, T = T is an inflection point of C(T;t) for

this case. Therefore, the minimum of C(T;t) is at T = 0,

i.e., T = 0 as seen in Figure 4.6.

If, however, A(Tm ) > c 3  , there exist two fea-

sible solutions T= T1 and T= T2, 0 < T1 < T2 < which

are the two positive roots of Equation (4.12). Also,

c
A(T) < 0 < T < T1, T > T

and

A (T) > C T Tc 2 -C, TT 2 .

For this case, T1 and T2 can be obtained by solving

Equation (4.12) numerically. It should also be point-
dC (T; t) '" '

ed out that dT > 0 for 0 < T < Ti, T > T2, and

dC(T;t) < 0 for T1 < T < T In this case, we consider
dT 12

the minimum of C(T;t) for the following three cases

(see Figure 4.7).
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Case A. If C(O;t) > C(T 2 ;t), then the minimum of C(T;t)

is at T=T for t> Tand is at T t for t < T.

Case B. If 7(O;t) < C(T 2 ;t)' then the minimum of C(T;t)

is at T 0

Case C. f C(O;t) =C(T ;t), then the minimum of C(T;t)

is at 0or T for t> Tand is at T=0 for t -T.

* Case When ~ 1

For this case, A(T) fie e where (x =ab and B=b.

*Now A(T) is a monotonically decreasing function of T and

A-O cA If ct (4. 12) has no feasible solu-

dC( T;t) 2 1*tion and dT 0 for T > 0. Therefore, the minimum
dT*

of C(T;t) is at T = 0, i.e., T =0. If, however, *

cA c- then there exists a unique solution of (4J.12)

2 1
given by

T = 1 n{- - (4.16)

From the fact that dT~t 0 for 0 < T T 0and dT~t

> 0 for T -, To, the minimum of C(T;t) is at T =To for

t T 0and at T =t for t <T 0 *
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Case When 0 < y < 1

For this case, A(T) is a monotonically decreasing

function of T with A(0) = and A(-) 0. Then the unique

positive root of Equation (4.12) is the solution. Fur-

ther, since dC(T;t) < 0 for 0 < T < T3 and dT 0

for T > T the minimum of C(T;t) is at T = T3 for t < T

and at T = t for t < T as seen in Figure 4.0. We can

summarize the above results in the following theorem.

Theorem 4.2. Suppose that J, y, c c2 (> C1 ), and c 3

are all greater than zero. Then the optimum release time

T is given by the following expressions for the cases

when y > 1, y 1, and 0 < y <1.

Case When y > 1

y-l c 3 *

Case A: If a(-) < , then T = 0.
ye c 2  c1

Case B. I (y-l)/y > c 3  , then there exist two

_CaeB If c(-) c 2 - c 1

feasible solutions T = T1 and T = T2 (0 < T1 < T2 <

which are the two positive roots of Equation (4.12) and

the optimum release time is as follows:

4-22
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-*

If C(O;t) > C(T 2 ;t)' then T =min{T 2 ;t}

If C(O;t) < C(T 2 ;t)' then T =0

If C(0;t) =C(T 2;) then T =0 and T, t >T

and T 0Ofort <T 2

Case When y 1

* C
If < 3 Fthen T =0. if a> 3 ,then

C 2 - 1l2

there exists a unique solution v

T~ ~ = n{c(c) - c)
0 c 3

of Equation (4.12) and the optimum release time is T =

min(T ;t).

Case When 0 < y< 1

For this case, Equation (4.12) has a unique positive

0 root T 3 which is the solution, and the optimum release

time is T =min{T 3 t}.
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Al. INTRODUCTION

In this section we describe the development of sto-

chastic models for performance and cost evaluation of

hardware-software systems in the operational phase.

Section A.2 deals with the development of stochastic

models for system performance assessment. The state of."-

the system is described by up or down states of the

hardware and the software system and by the number of

errors in the software system. The hardware-software . '

system is down if either the hardware or the software

system is down, and up if both are up. The hardware

failure distribution is exponential with failure rate

B. The software failure distribution between occurrences

of software failures is also exponential with a failure

rate iX, where i = 0,1,...,N is the number of remaining

errors in the system. The repair rates are exponential

with parameters y and :, and the probabilities of imper-

fect repair are ph and p for the hardware and the soft-

ware systems, respectively.

Based on this model, expressions for various

stochastic performance measures arc also developed in

Section A2. These are distribution of time to a speci-

fied number of remainincF software errors; state
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occupancy probabilities; expected number of hardware, " U

software, and hardware-software failures detected by

time t; system reliability, availability and average

availability.

In some cases, an improvement in one performance

measure causes a worsening of another. For example, an

improved system availability causes an increase in the

expected number of failures. In order to evaluate the

effect of these conflicting measures on system per-
r "I

formance, cost models are developed in Section A3 for the

hardware, software, and hardware-software systems. Each

model gives expected total cost by time t and consists

of three cost elements; the cost o" failures, the cost

of repairs, and the cost due to system unavailability.

The results of a numerical study to investigate the

effects of cost factors, failure rates, and repair rates

on the expected number of failures, average availability

and expected total cost/unit time are also discussed.

4 A-2

* p

A- 2

ID



A2. A MARKOV MODEL FOR HARDWARE-SOFTWARE

SYSTEM AND PERFORMANCE MEASURES

In this section we develon a stochastic model and

expressions for the performance measures of a hardware-

software system. The basic model is developed in Section

A2.1 and assumes the system behavior to be Markovian.

In order to use this model to evaluate and predict

the system performance, we generally need expressions for

the appropriate quantitative measures. Such expressions

for the following measures are derived in Sections A2.2

to A2.5.

(i) Distribution of time to a specified number of

remaining errors in the software system.

(ii) State occupancy probabilities.

(iii) System reliability and availability.

(iv) Expected number of software, hardware, and

total failures by time t.

A2.1. System Description and Model Development

Consider a system consisting of hardware and software

comDonents, all of which are subject to random failures. The

hardware components 'ail due to either defects or wear-out.

A-3
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A software component is said to fail when a fault, a

specific manifestation of an error in the proqram, is

evoked by some input data resultin5 in the proqram not

correctly computing the required function. Whenever

any of these failures occurs, the system goes out of

operation. A repair activity is then undertaken to re-

move the cause of the failure and bring the system back

to an operational state.

In the present study, we assume that the hardware

and software components can be viewed as a single system

each. In other words, the hardware-software system will

be treated as 2-unit (or 2-system) systems, one repre-

senting the hardware components and the other the soft-

ware components. The up and down states of such a system

are shown in Figure A2.1.

We develop a model for the stochastic behavior of the

system under the following assumptions:

(i) The errors in the software system are independent

of each other and each has an error occurrence

rate . 0

(ii) The failures of the hardware system are indeDen-

dent of each other and have a constant occurrence

rate . Only those failures which cause the

system to go down are considered.

(iii) The probability of two or more software or

0 hardware failures occurring sim-uitancousiv
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is negligible.

Iiv) The time to remove a software error, when

there are i errors in the system, follows an

exponential distribution with parameter pi.

(v) The time to remove the cause of a hardware

failure follows an exponential distribution

with parametery. r

(vi) Failures and repairs of the hardware system are

independent of both the failures and repairs of

the software system.

(vii) At most one software error is removed at correc-

tion time and no new software errors are intro-

duced during the error removal (correction)

phase.

(viii) When the system is inoperative due to the occur-

rence of a software failure, the error causing

the failure, when detected, is corrected with

probability ps (0 <p< 1), while with proba-

bility qs (Ps + q= 1) the error is not removed.

Thus, qs is the probability of imperfect main-

tenance of software.

(ix) After the occurrence of a hardware failure, the

cause of the failure is removed with probabilitv

P h(0 < P < 1) while with nrobabilitV ch(P , C = ,

the cause is net removed. Thus, qh is

A-6



the probability of imperfect maintenance of

hardware.

(x) The system is considered to be inoperative

whenever it is under maintenance following a

hardware or a software failure.

Now, we examine the failure and repair times of the

software and hardware systems independently, based upon

the above assumptions.

Software failures, from assumptions (i) and (iii),

follow an exponential distribution. Let i be the number

of errors in the software system. Then the probability

density function (pdf) of the time to next software

failure, Ti , is given by the distribution of the first

order statistic of i exponential distributions each with - _
"1

parameter ), i.e.

f-(t) = (i It) e-t i-i

or1

uLetting i) , the pdf and the cumulative distribution

function (cdf) of T. can be written as

t
fi(t) = .e (A2.2)

and -) t '

F. (t) 1 - e (A2.3)1
ii

From assumption (iv), the cdf of the software maintenance

A-7
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time when there are i errors in the system, Wi , is

t
11P(W i < t) e 1- (A2.4)

The cdf's of the hardware time to failure, U, and main-

tenance time, V, from assumptions (ii) and (v), respec-

tively, are:

P(U < t) = 1 - e- t (A2.5)

and

P(V < t) = 1- eYt (A2.6) p. -

To summarize, hardware failures and repairs occur

according to exponential distributions with parameters 6

and y, respectively. These parameters are considered to .

remain constant. The distribution of the times between

software failures also follows an exponential distribution,

but its parameter,X, also varies with the number of errors

remaining in the softwaze system, i. The distribution

of the maintenance time for software is again exponential

with a parameter Ili which changes with i. 0 -

Now, we consider the failure phenomenon in the total

hardware-software system. Suppose there are i errors in

the software and the total system is operational. Let

Y. = min(TiU) (A2.7)
1 3

It can be easily shown that Y. has an exponential distri-

bution with parameter ( +?Xi) and

Fy (y) = e - e (A2.8)
1

The probability that a software failure will occur w

before a hardware failure is
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P(Ti<U) = JP(U>TilTi=t)-dFi(t)

0

Gox
f P(U>t)'Xi e  -d t  

_

0

(a+x )t
.e . dt

0

or A.
1(T i i = 0 1, .. ,N (A2.9)P -U Pi = - .. ..,, , . .

Similarly, the probability that a hardware failure occurs

before a software failure is

P(U<Ti) qi _ + l*, i = 0,1, ... ,N (A2.10)

[n other words, when the hardware-software system is

operational with i software errors, the time to next failure

is given by Y.. The probability of the next failure being

a software failure is pi and being a hardware failure is qi"

Let X(t) denote the state of the system at time t;

where

i, the system is operational while there

are i errors remaining in the software

system, i = 0, 1, 2, .. ,N.

X (t) ,the system is down for miaintenance of
(A2.11)

software with i software errors,

i s  = is ,2s...,Ns -

ih' the system is down for maintenance c-f

hardware with i software errors,

h 0 h' h'"'~''h
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The transitions between the states of the system, i.e.,

in X(t), are governed by assumptions (i) through (x) and

Equations (A2.9) and (A2.10). The transition probability

matrix for the X(t) process is given in Equation (A2.12) and

a diagrammatic representation of such transitions is given

in Figure A2.2.

N N N N-1 N-Ih N-1s N-2 .. o1 0 0h s s h
N 0 qh N 0 0 0 0 ... 0 0 0 0 0

Nh Ph q 0 0 0 0 0 ... 0 0 0 0 0

N q 0 0op 0 0 0 ... 0 0 0 0 0

N-Ih 0 0 0 0h qh 0 0 ... 0 0 0 0 0

N-Is 0 0 0 q 0 0 Ps* 0 0 0 0 0

N-2 0 0 0 0 0 0 0 ... 0 0 0 0 0

P .. . . . . . .. . . . . (A2.12)

0 0 0 0 0 0 0 ... 0 ql p, 0 0

1 h 0 0 0 0 0 0 0 ... Ph qh 0 0 0
1 0 0 0 0 0 0 0 .. qs 0 0 P 0

3 5
0 0 0 0 0 0 0 0 ... 0 0 0 0 1

Oh  0 0 0 0 0 0 0 ... 0 0 0 Ph qh

A-10

6



'-"4

*~ VU

0

*~~~~$ W540- U

C4.5a 0 m

NE

*U) ri0
01

I4 Az I

01

* .-1'-r-4

A-1



To summarize the system behavior, consider once aqain

the above situation, i.e., the total system is operational

with i software errors. The time to a failure is qoverned

by Y. If a software failure occurs, and the probability of

this occurring is pi, the system goes into a down state s.

The system undergoes software maintenance and, after a random

time governed by Equation (A2.4), goes to state i with proba-

bility qs and to state (i-l) with probability ps.

If the failure is a hardware failure, and the proba-

bility of this happening is qi, the system goes into a down

state, i Following a repair for the failure according to

Equation (A2.3), the system goes back to state i with proba-

5ility Ph or stays in state ih with probability qh"

The above system behavior is valid only until the soft-

ware is error-free. After the software is error-free, the

total system reduces to a hardware system only.

Thus, we see that the stochastic process X(t) forms a

semi-Markov process. It makes transitions as described

above and the times spent in various states are random,

given by Yi' Wil or V, depending on the state. A typical

realization of the X(t) process corresponding to Figure

A2.2 is shown in Figure A2.3.

Let Qk j(t), kj = i i' h be the one step transi-

tion probability that after making a transition into state k,

the process X(t) next makes a transition into state j in

an amount of time less than or equal to t. Then, Q.. (t)
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is given by the product of Pk,j and the cdf upto t of the

time corresponding to state k. Thus, for k i, and j = is , -

we have

(t) = P. "F (t) (A2.13)

s S 1

The expressions for various Q s are as follows:

(t (1 - ( 1+i
_ 1

-(si) t
Qi~ (ts + .i -e)

+s1

-pit
Q (t) = (1 - e 1)1s,i

_ Iit (A2.14 ) :...1

Qi (t) = p (1 - e ),
1 ,i-ls

. i(t) = Ph'l e- Yt

and

hi h (t) = qh(l - e Y ) .i

The expressions for 0k j (t) 's given by Equation (A2.114)
k, ., .

constitute the basic equations that describe the stochas-

tic behavior of the X(t) process. These equations will

be used in the subsequent sections to derive the system

performance measures. We will need the Laplace-Stieltjes

transforms of the QkCt) 's and some related results.,J p _w

These are given below.
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Let ( and tS denote the Laplace and Laplace Stieltjes trans-

form, respectively; and for any function g and G, let

g* (s) = (g(t)), and G(s) =eS(G(t)).

The Laplace-Stieltjes transform of the above Q (t)'s .

are

XS(Q .) s + + . (A2.16)

.- eS(Qi,i s + + A. (A2.17)
1

qci .
-S(Qi i) = 1 (A2.18)4 s ' s + i j:

Pssi

S (Qi ,i-1 - s + . (A2.19)
s 1

Ph¥
. S (Qh ) - h (A2.20)i s + Y'

shy
Oe S(C) h'Y(A2.21)S(i h, i h )  s + Y

The following Leimas from the basic Laplace, S

Laplace-Stieltjes transforms and their inverses will be

useful for our analysis (see Abramowitz et al., 1965,

and Muth, 1977).

Lemma A2.1. (Linearity property). if

h(t) Af(t) + Bq(t)

then

h'(s) = 0  (h (t)) Aft(s) + Ba°(s)•
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Lerima A2.2. The Laplace transform of pdf f (t) is equivalent

to the Laplace-Stieltjes transform of its cdf F(t).

i' f(s) =,e{f(t) e e S f(t)dt

= e-St dF(t) "

0

= eS{F(t) }

Lemma A2.3. (Heaviside Expansion Theorem). If

(i) q(s) = (s-al) (s-a 2) ... (s-a),

where aI  a2  a...a,
1 2 m

(ii) p(s) is a polynomial of degree m, and

(iii) f (s) ---(-s)

then
i p(an ) ant

f(t) = L e
n=l n

m
where a'(a i) = (a. -a.)

i,j=l 1 ]

i j

ar
r p(a) at

F(t) = L a (e n 1)
n - ~ n an

If one cf the a , i.e. a. = 0, 1 "i < m, then e
n 1 - -

r(a - p(a) a t
_ 1 + n 1 n

(t) i t +" aj n=l l (an) a n
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A2.2 Distribution of Time to a Specified Number of

Remaining Errors in a Software System "

The errors remaining in the software system are

sources of failures and we would like to remove them r ..

as soon as possible. However, it is not always feasible .

and/or practical to remove all of them in a reasonable

time. In that case, we would like to know the distri-

bution of time to n (0 < n < N) remaining errors.

Let T. be the first passage time for operational

state i to operational state n and let G. be its cdf.
V

Now we derive the equations for gN,n(t) and GN,n(t), the

pdf and cdf, respectively,of T17,n

A2.2.1 Distribution of TNn !

Consider a time interval (r,r+dr). For any i, the

probability of going from i to is in this interval is

dQii (r) and the probability of going from i to ih is 0

dO~ i(r). Once the X(t) process reaches either is or ih

further transitions in it will be governed by cdf's, G.1~ ,fls

and Gi n, respectively. Thus, the renewal equation for

Gin i = n+l, ... ,N can be written as

A-17
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t

G i,n(t) Gk, n (t - x)dQ i,k(X)

kEE f ~

• h *G. (t) + Q.i *G. (t)"i'h ih~n is is 1n

= 0 Q*Q .*G (t) + 0.QiG t
Qi,ih H ihi i,n , is ,1 i,n (

+ Qi~ *Q i ,i-l*Gi-~~ )  (A2. 22)

s s

where E is the state space, G = 0 =  
. i andis he -fod nrij h'h

._  i  is-fold convolution of Qih i with itself.

* Taking the Laplace-Stieltjes (L-S) transform of Equa-

tion (A2.22) we get

G. (S) = Qii(S)Q (s)Qi h (s)Gi (S)H 1hipi n .U

+ Q. (s)Q (s)G (s)Qi'i s  " s Ii i,n

+ Qi i (s)O i i - (s)G i - l , n ( s ) , (A2.23)

where
Co

= .() s (+S
j0 h''h s + phy

* S"

and, from Equations (72.16) to (A2.21),

OQi,ih(S) =s + B+I
Q . (s) - qh_ __ __

-h ' ih  ( ) s + y '

~ Ph Y

Qi hri(s) -s + y

A-18
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Qi isS) = + +
ls1

q 1B -. s 1-*•

qsi
is'i~s s + i

Qis i-l (S) = s S+. Ili....

On substituting the expressions for the various L-S trans-

forms in Equation (A2.23) and simplifying, we get

G i,n(s) = aiG i,n(s) + bi G i-l,n(S ) ,  (A2.24)

where

a. Phy(s+vi) + qsi2i5(s+Phy))i =(s+Phy)(s+8 +Xi)(s+i(i)

b. = - (A2.26)
1 (s+ 1i) (s+1+i)

For i = n+l, G i (l,n(s) = G (5) = 1, and

b.
Gi (s) = (S) = i - (A2.27)
i,n Gn+i,n(5 1 - a.

p SXii (s+PhY) (
(s- sx . sx )'(A2.28)
(S+Xl,i (S+x2,i (S+X3,i

where -x i -x 2 ,i' and -x 3 , are the roots of the polynomial

0 3 s2 (Xi+i+B+Ph ) + s(Psi i+S i+XiPhY+UiPhy)+PsPhY~iui

N pS Xi { (s+Phy ) }
GNn (S) I (s+x )(s+x) (s+x3 i) (A2.29)

, ( i=n+l i, 3,

Further, let
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xI  =~ x1
x-,n+l 1

x -x3,n+l 3

X 1,n+2  4  (A2.30)4I
x2, n+ 2 

= x5

X3, n+ 2 N x

XlN Xl(N-n)

X2,N x2 (N-n)

3,N (N-n)
and

" 1K = 3(N-n)

N-n Nf ps (s+Phy) N-n N i

Gin+l
GN, n (s)= K (A2. 31)

T[ (s+x.)j=l 3

By using the results from Lemma A2.3, the

pdf and the cdf of TN,n are obtained from Equation (A2 .31)

as

K UN (-x +pY) N-n -x"t
= ( n+ljh e (A2.32)

j l (-x. + xi )
• i=l

ij

and
K UNl(-x, + )N-n -

G N,n(t) = ". -y (e -1) (A2.33)j = l K _ .
fl (-x. + x.)

| i=l

U

A- 20



where N N

UN (P ; ).
i=n+l Sii

The distribution function of the first passage

time to enter a state corresponding to a specified number

of remaining software errors will be useful in the study

and analysis of the other performance measures.

A222 Mean and Variance of TN, n

Now,

E[TN] = gNfn(t)dt (A2.34)

0

Substituting for gN,n(t) from Equation (A2.32), we get

* K UN ( + N-n -x.t
EjT = l K + P te dt

11 (-x. + xi) 0
i=l 1

isj
• ~o r •K U (-x

r n=l K 1 (A2.35)

i=l 1

i~j

A-21
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Similarly, to get the variance of T we have
N,n

K UN . ) N-nE[T N ] = xn+l - + Ph 2 (A2.36)
N,n K x3(A.6

IT (-x. + x i)i=l
i~j - .

and

VarT] E[T 2 - E [ T (A.7N,n N ,n N,n (A2.37)

A2.2.2 Illustrative Example

Consider a system with N = 10 errors, ps = 0.9, and

Ph 0.9. Assume that X. = iX, pi = iJ, and the parametric

values are X = .02, 1. = .05, 8= .01, and y = .025. We

are interested in the distribution of TN,n, n = 0,l,2,...,8,9.

The pdf's and cdf's of T N  for various values of n and for. •N,n

t from 0 to 500 units are computed from Equation (A2.32) and

(A2.33), respectively, and are shown in Figures A2.4 and A2.5,

respectively. Also, the means and variances of these dis-

tributions are obtained from Equations (A2.35) and (A2.37)

respectively, and are summarized in Table A2.1. From

Figures (A2./4) and (A2.5),we notice that the distributions 6

are highly dependent on n. Also, as expected, the distri-

bution of the time to an error-free software system has

a large mean and a large variance (See Table A2.1). The S

mean and variance of T10,n for Ph = 1.0 are also given in

Table A2.1. We note that both of these values are smaller

A-22
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than those for Ph = 0.9 because of an improvement in the

hardware system maintenance activity.

A2.3 State Occupancy Probabilities

In this Section we are interested in deriving expres-

sions for the probability that the system is operational

at time t with a specified number of remaining software

errors. Let PN,n(t) be the probability that the system

is operational at time t with n remaining software errors,

given that it was in operation at time t = 0 with N soft-

ware errors, i.e.

PN,n(t) = P{X(t)=nIX(0)=N}, n = 0,1,...,N (A2.38)

We call PNn(t) the (operational) state occupancy

probability. By conditioninq on the first up-down cycle

of the process and using an approach similar to that of

Section A2.2 we get the following renewal equation for

n,n M
-X (n+8 t

P e (t) (A2.39)
n,n n,n n,n

By conditioning on the first passage time, we get
* 0

P (Nnt) P n *GN (t). (A2.40)
N,n n,n N,n

To obtain the L-S transform of P (t), we take the
N,n

L-S transforms of Equations (A2.39) and (A2.40) and solve V

the resulting equations. Let ai 's, b's, and x. .'s beas

given in Equations (A2.25), (A2.26), and (A2.30), respectively.

A-26
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m I 1P . .. . - . ...

having GNN(s) = 1, and lettingThen, by ha i g N,

A(s) = sa(s+,pn) + Xn (S+P in) (s+Phy), and

B(s) = (s-x n )(s- X ) (s- x ),
ln 2,n 3,n

the L-Stransformsof P N,n(t) and PN,O(t), respectively, are

P (S) - A(s) G (S) (A2.41)

N,n BS) Nn

and

PNO(s) = (1 + + + ph N,

The expressions for PNo(t) and PN ,n(t), n I,...,N S

are obtained from the results of Lemma A2.1 to A2.3 as

uN N-n -x.t

P (t)G (t)- n+l( + P h  e
Nn N'n j=l K x.,,i=l (-xj

i~j

and K 1 u N -x -+ P ) N- .t
K1  -N 

P (t)= G (t) - Y"
t, NO j=l K1 (-x.+xi )

i=l

i#j

where K = 3(N-n+l) and K1 = 3N+l are the number of roots

in the denominator.

A2.4 System Reliability and Availability

A2.4.1 System Reliability

The reliability of a system at time x is given by

F(x) = 1 - F(x)

where F is the life distribution of the system. The corre-

sponding conditional reliability of a unit of age t is

A-27
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F(xlt)= F(t + x) , if F(t) > 0
F(t)

Consider our hardware-software system. At t =0, the

initial number of software errors in the system is equal to

N. The reliability of the system at this stage is

P {up time > x) = P {min(U,TN) > x)

= P (U > x)-P {T > x.

-(a+x N)x
-e

Next, consider some time t > 0 when the system has just been

repaired and there are i remaining errors. The reliability of

the system is
- (B+Xi) x

P {up time>xlX(t) =i}= P {min(U,T i) >x) =e (A2.42)

A2.4.2 System Availability

Another useful measure of system performance is its

availability,which is defined as the probability that it is

operational at some given time t. In our case, the system will

be operational if the hardware system is in an up state and the

software system is in an up state with n remaining errors,

n = 0,1,...,N. In Section A2.3, we derive the expressions for

PN,n(t), the probability that the system is operational at

time t with n errors in the software system, given that it

was operational at t =0 with N software errors. Thus, the

system availability can be defined as

N
A(t) = I pN,n (t) (A2.43)

n= 0

To see the behavior of A(t) we consider an example

with N = 10, Ps = 0.9, Ph = 0.9, = .02,i =.05, 8 = .01 and
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FigureA2.6. State Occupancy Probabilities
and System Availability.

A- 29

S S



Table A2.2

Selected Values of P (t) and A(t)
N,n r -

M N =10

Time

n 50 100 200 300 400 500

10 .00 .01 .0 0000 .0

10 .003 .001 .000 .000 .000 .000

8 .030 .003 .000 .000 .000 .000

8 .030 .006 .001 .000 .000 .000

6 .01 .024 .002 .000 .000 .000

6 .149 .052 .004 .001 .000 .000

4 .106 .106 .018 .004 .001 .000

3 .036 .159 .042 .011 .003 .001

2 .006 .139 .105 .037 .011 .003

1 .000 .054 .215 .146 .074 .033

0 .000 .005 .191 .437 .578 .645

A(t) .586 .561 .586 .637 .667 .682
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y -.025. For these values, distributions PNn(t), n=0,1 .... ,io,

t from 0 to 500 are obtained as described in Section A2.3. Se-

lected values of PN,n(t) are given in Table A2.2 and the proba-

bility distributions are plotted in Figure A2.6 for n=O,i,... 10.

The availability, as given by Equation (A2.43) is obtained as the

sum of probabilities. Thus, for t = 100, we have

10
A(100) = I Pl0,n(1 0 0 ) = 0.5612

n=0
Similarly 10

A(500) = I P10,n( 5 0 0 ) = 0.6819
n=0

Values of A(t) for various t are also plotted in Figure A2.6

A2.4.3 Average Availability

A sampling measure for the availability of an operational

system is the ratio of total up time to total time elapsed.

From a practical point of view, it is an important measurable

sampling characteristic.

From the definition of availability, we find that the

expected value of total up-time by time t caa be expressed as
t

U(t) = I A(x)dx.

The ratio of this value to the total time elapsed, t, will

give us an average availability up to time t, Av(t), i.e.

t

f A(x)dx

A (t) = U(t) 0
av - t

Similarly, the average unavailability can be ex:-rc-&

as f A(x)dx t1 -A(x)
0 ~ 0

1 Aav (t)= 1 t
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A2.5 Expected Number of Software, Hardware
and Total Failures by Time t

A2.5.1 Expected Number of Software Failures

Let M t) be the expected number of software failures
5

detected by time t. In order to find the expression for

M (t), we consider a counting process {N s(t),t > 0),

where N s(t) is the number of software failures detected

during the time interval (O,t], when the initial number of

errors in the software system is i. Let

Msi (t) = E [Nsi t) IX(0) = i]

Then, by conditioning on the first passage time going

from state N to i,
N

M (t) = = Msi*GN i(t) (A2.145)
where M t) can be obtained by conditioning on the first

51

down cycle of the process

M S (t) Q. t) + Qi,i *Qi *Msi (t)
s; ,

+Q Qiih*Q *Q i*M.
, (th H ""h' 51"M

The Laplace Stieltjes transform of M s(t) is

X. Si I..
M (s) = 1 + aiM si(s) -

51Ms(S S + B + \ i  1 51 :i

where a. is defined in Equation (2.25). Now,
1

-si s + 8+ 1-a

or .

si() = (s+x-1(+)((s+xPh)(+x
. ,1
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where x 1 1 X2 ,i' x3,i are given in Equation (2.28).

In a simplified form,

M .(s) ) (A2.4~6)

From (A2.415) and (A2.4~6) the L-S transform for M Mt is
s

N
M (A = siG Ni(s)

N (s +p
G1S (A2.4i7)

Finally, using Lemmas A2.1 to A2.3, we obtain the expression

for M Mt as

N Ki N *~ )N-1+l (-. )-x .t.

1 =1 )=l Ki x.

where K. 3 3(N-i+l).

A2.5.2 Expected Number of Hardware Failures

Let Mh(t) be the expected number of hardware failures

detected by time t. Consider a counting process, {Nhi(t),

t > 0}, where Nhi(t) is the number of hardware failures

detected during the time interval (0,t], when the initial

number of errors in the software system is i. Let

M (t) = E[Ni (t )IX(0) - ii

Then, by conditioning on the first passage time going

from state N to i, P.
N

M (t) z M *G
h iOhi N,i(ty

where Mhi(t) can be obtained by conditioning on the first

U ~down cycle of the process T7
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Mh~t lihQ' (t) + Q. *Q *Q i*1ht
Mh+ i ~ *Q j H *Mhi (t

Now, the L-S transform of Mhit for i =1,2,...,N is

M(s) = + al h(S)

or

M.~.s) =1 G. (i),(A2.50)
Mi p A~j. iiSi

For i =0, this L-S transform becomes

MhO~s s + B8

or (5+Phy)

h YT

From (A2.L19)the L-S transform for Mh(t) is
N-

The inverse L-S transform of Mhi (s)G N,i(s) is

K. YU -x+ N-i+1 -x.t
G. (t) X + h": .(-1 K. x.

where K. 3(N-i+1), and the inverse L-S transform of

hO (s) GN,O (S) is

V



N N+1 N.. N +1 -xt
G0 tt K- Ki (x

1 (Xjy) 1~ i- +X)e

0hr K- K- 3N+2

Finally, the expression for Mh(t) is

N
Mh(t) = 0()+XGt.

A2.5.3 Expected Number of Total Failures

Let P4(t) be the expected number of total failures

detected by time t.

Consider M4 (t) to be the expected number of total failures "
3.7

when there are i software errors in the system. For any

M.(t) 14(A2.52)
st) i t) + 14hi t)

where M80 (t) - 0,
80-

and i (S is + hi (s)

Then N
M (t) E N M1 *G .(t), (A2.53) ~

i=O

N

orNo

i-O

and

P4(t) -M Ct 4~)(A2.54)
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TABLE A2.3

EXPECTED 14UMBER OF FAILURES DETECTED PEP. TIME

TIME SOFTWARE HARDWARE TOTAL

FAILURES FAILURES FAILURES

0000 0.00 0.00 0.00
20.00 2.48 0.14 2,62
40.00 4.19 0.26 4.45 .

60.00 5.47 0.38 5.85
80.00 .6.47 0.49 6.96
100.00 7.27 0061 7.87
120.00 7.92 0.72 8,64
160.00 8.91 0,94 9.85
200.00 9.59 1.17 10.77
240.00 1000A 1.41 11.4S
280.00 10.3-9 1.66 12.05
320.00 10.62 1.92 12.53
360.00 10.77 2.18 12.95
400.00 10.88 2.44 13.32
440.00 10.95 2.71 13.66 ~
480.00 11.00 2.98 13.99
520.00 11.04 3.25 14.29
560.00 11.06 3.53 14.59
600000 11.08 3.80 14.8
640.00 11.09 4.08 1 F.*17 "*

680.00 11.10 4.35 15.45
720.00 11.10 4.63 15.73
760.00 11010 4.91 16.01
800.00 11.11 9. 118 16.29
840.00 11.11 5,46 16.57
880000 11,11 5o74 16.85
920.00 11.11 6.01 17.12
960.00 11.11. 6.29 17.40

1000000 11.11 6.57 17.68

r
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i.e. the expected number of total failures detected by

time t is equal to the sum of the expected number of soft-

ware and hardware failures.

A2.5.4 Illustrative Example

Consider a system with an initial number of software

errors, N = 10; probabilities of perfect software and hard-

ware maintenance ps= .9 and Ph= .9, respectively; software

failure rate Xi = iA, and X = .02; software repair rate

= ip, and v = .05; and hardware failure and repair

rates .01 and y .025, respectively.

For this system, the expected number of software,

hardware, and total system failures are computed from

Equations (A2.45), (A2.49), and (A2.54), respectively.

Selected values of these quantities are given in Table A2.3

and plotted in Figure A2.7. The information in Table A2.3

shows us that the number of software failures detected is

increasing rapidly at the early times and then slows down

as the number of remaining software errors and software

failure rate decrease.

On the other hand, the number of hardware failures

detected is increasing with the slow-down of the number

of software failures detected.
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A3. OPERATIONAL COST MODELS

In Section 2 we proposed a model for the operational

phase of the hardware-software system and developed ex-

pressions for several performance measures. In many appli-

cations, these individual measures are of less interest

than an overall measure, such as the expected total cost.

With this objective, in this section we develop cost

models for the hardware, software, and hardware-software

systems. The principal cost components considered are

the cost of a failure, the cost of the maintenance activity

performed to bring the system back to an operational state,

and the cost of system downtime. The primary measures

that affect the total cost are the number of failures and

the system availability.

The relative importance of these measures in a given

situation can be expressed via the numerical values for

the cost factors.

Models for hardware and software systems are developed

in Sections A3 .1 and A3.2, respectively. The total hardware-

software system is discussed in Section A3.3. Several

numerical examples are used to illustrate the results.
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A3.1 Operational Cost Model: Hardware System

In this Section we develop a cost model for the hard-

ware system. The system is in an up state at time t = 0.

After a random time U, whose distribution is exponential

with parameter 8 (see Equation A2.51 a failure occurs and

the system goes into a down state. A repair or mainten-

ance activity is undertaken and after a random time V, ... .

whose distribution is exponential with parameter y (see

Equation A2.16), the system is brought back into an up state.

The cause of the failure would have been removed with

probability Ph (0 - Ph < 1) The sequence of up and down

states forms a renewal process. For purposes of this

Section, it is assumed that the software system has no

effect on the operation of the hardware system.

The following costs are incurred due to the failure

and maintenance activities: 5-,

(i) A fixed cost c h per failure

(ii) A variable cost c per repair per unit time
h2

(iii) A variable cost due to the unavailability of

the system, ch per unit time.
3

Consider the time interval (0,t).

Let

Cht) = expected total cost incurred by t,

Mh(t) - expected number of.hardware failures by t,
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Ah(t) = system availability at t.

Then, the expected total cost by time t is given by

t

Chlt) Chl M(t) + Ch2yt + Ch3 {l-Ah.(x)ldx (A3.l)
0 -

where

t

f{ }-Ah(x)ldx is the expected total down time during

0

(0,t). Now we develop expressions for Mh(t) and Ah(t)

and obtain a closed form equation for Ch(t). Consider

one up and down cycle, i.e., one renewal. ..If the main-

tenance activity is perfect, the length of this cycle

will be U + V. If, however, the maintenance activity is

imperfect, the repair will go another V units of time

so that the length of the cycle will be U + V + V. If

the maintenance is imperfect for the second time, the

length of the cycle will be U + V + V + V, and so on.

Therefore, the probability density function, g, of the

renewal time is given by

g Phfu *fv + Ph hfu*fv*fv 2]22111,

q ,f ,,*f*f*f + (A3.2)+ Ph h U LV V ± "' ...

where * stands for convolution,

f is the pdf of U,

*U
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and- f Vis the pdf of V.

The Laplace transform of g, g* is

g*(s) Ph= (sf~s( + q hfv*(s) + (9hf*(s)) 2+ *

or~ ~ g*()s)
1 -hv*s

or g*(s) Ph s+~ + +

or g*(s) = )s+(A3.3)

Now, the renewal equations for the expected number of hard-

ware failures can be written as

Mht)=Fu(t JM~t- x)g(x)dx (A3.4)

0

where Fu t is the cdf of U.

The Laplace transform of M.h(t) is

U*S + *4(S)g*(s)

8~ + Mh(s) + 0 s* h

or

M1~s)= (s + Py
s (s + 8+ Phy P *

By taking the inverse Laplace transform we get
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-(B+Phy) t
l e 1

Mh (t) + Ph+

~(B+Phy)t
e -1+ (B+Phy)t

or

8 - (B+Phy) tM h(t) = SPy 2 phy (8Phy) t + (1-e (A3.5)

The renewal equation for Ah(t) can be written as

t

A1h(t) =1 -Fut + f A~( x)g(x)dx,

0

and its Laplace transform as

A*1 (s) .'I.,-
hks s[l - (S7] S(s +8+

Therefore, the availability of the system at time t is

Aht h

-(8+y~t 1 - a+Phy)t

or-

+ e
A h(t) = A3 6)

B + h

Now, the expected total down time during (0,t) is
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-.- t~

I-Ah(x)}dx which, on substituting for Ahx from-

0

* Equation (A3.6), gives

(8 +ph(t+- h+ e

J(1 A h(x))dx = BPh~ + e (A3.7)______

0 (B + Py
t

On substituting the expressions for Mh~(t) and f{l-A h(x) }dx-

0
*from Equations (A3.5) and (A3.7), respectively, in Equation

* (3.1), we get, after some simplification,

= 1 t Y [Phy(S+phy) t + S(l-e -+hy )+ ch Yt
(B~p 2

cS
+ 3  2 (S+PhY~t 1 + (A3.8)

7$+ Y) +py

The above equation gives the expected cost incurred by

time t in terms of the hardware system parameters 5,y, and

and the cost factors ch ,Ch and c
1 23
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Illustrative Examples

We numerically study the behavior of Mh(t), Ahav(t)

and Ch(t)/t as a function of the cost factors c ch2
1 2

Ch and of the failure and repair rates B and y, respec-

tively.

Consider a system with 0 = Ph = 0.9, and y = .01,

.02, .05, .10, .20, .30, .50, .75, 1.0, 2.0, 3.0, and 4.0.

The average availability (Ahav(t)) and the expected number

of failures by time t are shown in Table A3.1 for t 100,

250, 500, 1000, and 2000. We notice that for a fixed

repair rate the average availability decreases with time,

the rate of decrease being higher for low values of y.

The expected number of failures in a given time interval

increases with y. This is so because at low values of y,

the system is down for longer periods of time, causing a

reduction in the up time of the system.

The expected total cost per unit time (Ch(t)/t) is

now calculated from Equation (A3.8) for given cost factors.

Such values for four sets of cost factors are given in

Table A3.2. For a given t, the cost first decreases and

then increases as a function of y. In other words,

Ch(t)/t seems to be a convex function with respect to y.
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TABLE A3.1

AVERAGE AVAILAEILITY ANr EXFECTED N-UMBEF: OF FAILURES

HARDWARE SYSTEM
FAILURE RATE: 0.010

AVERAGE AVAILABILITt

REPAIR T I M E

RATE 100.0 250.0 500,0 1000.0 2000.0

0.01 0.709261 0.583529 0.529082 0.501385 0.487535
0.02 0.762652 0.693831 0.668367 0.655612 0,649235
0.05 0.851105 0,831405 0*824793 0.821488 0.819835

0,10 0.910000 0,904000 0.902000 0*901000 0.900500
0.20 0.950139 0.948476 0.947922 0,947645 0,947507
0.30 0.965561 0.964796 0.964541 0.964413 0.964349
0.50 0.978733 0,978450 0.978355 0.978308 0.978284
0.75 0.985615 0.985487 0.985444 0.985423 0.985412
1.00 0.989132 0.989059 0.989035 0.989023 0.989017
1.50 0,992701 0,992669 0.992658 0,992652 0.992650
2.00 0.994506 0.994487 0,994481 0.994478 0,994477
3.00 0.996324 0.996315 0.996313 0.996311 0.996311
4.00 0,997238 0,997233 0,997231 0.997231 0.997230

EXPECTED N'UMBER OF HARDWARE FAILURES

0.01 0,7093 1.4588 2.6454 5.0139 9.7507
0.02 0.7627 1.7346 3.3418 6.5561 12.9847
0.05 0,8511 2.0785 4.1240 8.2149 16.3967
0.10 0,9100 2,2600 4.5100 9.0100 18.0100
0,20 0.9501 2.3712 4.7396 9.4765 18.9501
0,30 0.9656 2.4120 4.8227 9.6441 19.2870
0.50 0,9787 2,4461 4.8918 9.7831 19.5657
0.75 0.9856 2,4637 4.9272 9.8542 19.7082
1.00 0,9891 2.4726 4.9452 9.8902 19.7803
1.50 0.9927 2,4817 4.9633 9.9265 19.8530
2.00 0.9945 2.4862 4.9724 9.9448 19.8895
3,00 0,9963 2.4908 4.9816 9.9631 19.9262 w
4.00 0,9972 2,4931 4,9862 9,9723 19,9446
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TABLE A3.2

EXPECTED TOTAL COST PER: UNIT TIME
HARDWARE SYSTEM

FAILURE RATE; 0,010

C1=10, cH210 AND cm3=10

REPAIR T 
-M,

RATE 100.0 250.0 500.O 1000.0 2000.0
0.01 3.0783 4.3231 4.8621 5,1363 5,2734
0.02 2,6497 3.3311 3.5832 3*7094 3.7726
0.05 2.0741 2.2691 2,3345 2.3673 2.3836
0.10 1.9910 2*0504 2.0702 2.0801 2.08500.20 2.5936 2.6101 2.6156 2.6183 2.6197 P.0.30 3,4409 3,4485 3,4510 3,4523 3,4529
0.50 5,3105 5.3133 5,3143 5o3147 5,3150
0.75 7,7424 7.7437 7,7441 7,7443 7,7444
1.00 10,2076 10.2083 10,2086 10,2087 10.2087
1.50 15,1723 15.1726 15,1727 15,1727 15,1728
2,00 20.1544 20.1546 20.1546 20.1547 20,15473.00 30,1364 30.1365 30.1365 30.1365 30.13654,00 40,1273 40,1274 40,1274 40,1274 40,1274

CHIl100l CH2=10, AND CH3-10

0.01 3.7167 4.8482 5,3383 5,5875 5.7122
0.02 3,3361 3,9555 4,1847 4.2995 4.3569
0.05 2,8401 3.0174 3,0769 3,1066 3,1215 .0.10 2.8100 2,8640 2*8820 2,8910 2*89550.20 3.4488 3.4637 3.4687 3,4712 3,4724
0,30 4,3099 4,3168 4,3191 4,3203 4,3209
0.50 6.1914 6,1940 6.1948 6.1952 6,1954
0.75 8,6295 8.6306 8.6310 8,6312 8.6313
1.00 11.0978 11.0985 11,0987 11,0988 11,0988
1050 16,0657 16,0660 16,0661 1600661 16.0662
2,00 21,0494 21,0496 21,0497 21,0497 21,04973.00 31.0331 31.0332 31.0332 31.0332 31.0332 •"4.00 41.0249 41.0249 41.0249 41.0249 41.0249
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TABLE A3.2
(CONTINUED)

EXPECTED TOTAL COST PER UNIT TIME

HARDWARE SYSTEMV

FAILURE RATE: 0,010 0

CH1=1O, CH2=1O, AND CH3=100

REPAIR T I M 9

RATE 100.0 250.0 500.0 1000.0 2000.0

0.01 29.2448 41.8055 47.2447 50.0116 51.3953
0.02 24.0111 30.8863 33.4301 34.7043 35.3415
0.05 15.4747 17.4426 18.1031 18.4334 18.5985
0.10 10.0910 10.6904 10.8902 10.9901 11.0401
0.20 7.0812 7.2472 7.3025 7.3302 7.3441
0.30 6.5404 6.6169 6.6424 6.6551 6.6615
0.50 7.2245 7,2529 7.2623 7.2670 7.2694
0.75 9.0371 9.0499 9.0541 9.0563 9.0573
1.00 11.1857 11.1930 11.1954 11.1966 11.1972
1.50 15.8292 15.8324 15.8335 15.8340 15.8343
2.00 20.6489 20.6507 20.6513 20.6516 20.6518
3.00 30.4673 30.4681 30.4684 30.4685 30.4686
4.00 40.3760 4093764 40.3766 40.3767 40.3767 -

CH1=10v cH2z=100, AND CH3=10

0.01 3.9783 5.2231 5*7621 6.0363 6.1734
0.02 4.4497 5.1311 5.3832 5.5094 5.5726
0.05 6,5741 6.7691 6.8345 6.8673 6.8836
0.10 10,9910 11.0504 11.0702 11.0801 11.0851
0.20 20.5936 20.6101 20.6156 20.6183 20.6197
0.30 30.4409 30.4485 30.4510 30.4523 30.4529 r
0.50 50.3105 50.3133 50.3143 50.3147 50.3150
0.75 75.2424 75.2437 75.2441 75.2443 75,2444
1.00 100.2076 100.2083 100.2086 100.2087 100o2087
1.50 150,1723 150.1726 150.1727 150.1727 150.1728

-. 2.00 200.1544 200.1546 200.1546 200.1547 200.1547
3.00 300.1364 300.1365 300.1365 300.1365 300.1365
4,00 400.1273 400.1274 400.1274 400.1274 400.1274
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Plots of A tM for ..01, .05, and 0.10 versus

y are shown in Figure A3.1. As expected, the average

availability improves with y as well as with an improve-

ment in the failure rate, i.e., as 8 goes from 0.10 to 0.01.

Costs per unit times for various t are shown in

Figure A3.2 for B = .01, C = 10, Ch = 10, Ch 100

as a function of y and clearly show the convexity of the

cost function. A similar pattern is seen in Figure A3.3

which gives the plots of Ch(t)/t for the four sets of

cost factors at time t = 500 and B = .01.
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Figure A3.1. Average Availability vs. Repair Rate V
for Different Failure Rates. (t =500)
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Figure A3.2- Expected Total Cost/Unit Time vs. Repair Rate

for Different Cost Factors (B- .01, t- 500).
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A3.2 Operational Cost Model: Software System

* Consider a system consisting of software only. At

time zero it is operational with N errors in the system.

A failure occurs at a random time, TN, whose distribution

is given by Equation A2.2 with parameter A A repair is

undertaken and with probability ps the error causing the

failure is removed in a time WN whose distribution is expo-

nential with parameter V'N (see Equation A2.4.) The next

cycle starts with (N-1) errors in the system and the

failure distribution is now exponential with a parameter

(N-I)X. If the error is not removed, which happens with

probability q. = I - Ps' the distribution of time to next

failure is again exponential with parameter XN• A similar

behavior is observed throughout the entire life cycle of

the software system with i(O < i < N) remaining errors.

Note that the model is similar to the Imperfect Maintenance

Model (IMM) of Okumoto and Goel (1978).

A diagrammatic representation of the behavior of the

software system is shown in Figure A3. 4 .

As discussed in Section A3.1, for a hardware system,

the cost elements associated with the failure-repair cycles 4F

of the software system are

c = cost of a software failure,
-5
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c = cost incurred per repair per unit time,

and c = cost of system down time per unit time.
3

Then the expected total operational cost by time t is given

by

t

ptt {- As (x) I dx (A3.9)
CS1 2 

.2 :;.
where

Ms(t) = expected number of software failures by time t,

A (t) = availability of the software system at time t.
S

To get the expression for M (t) and A (t), we first ....
5 5

give the Laplace-Stieltjes transforms of the appropriate

quantities as follows. ,.

Let G (t) be the distribution function of the firstN,i

passage time from state N to state i. By considering the

renewal equation associated with this, the Laplace-Stieltjes

transform of G N,i(t) is obtained as

N p s X jU ;.: .
G i(s) = 2 (A3.10)Ni j=i+l s + slXj+1j) + pXjj""

J )j

Similarly, the L-S transforms of Ms t) and A(t) are given

by

N Xi(s + i) - w
MS s  = 2 G N(s) (A3.11)

i=l s + s(i+.) + p sXii.

and
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A s(s) I ( (1 2 1G5 )Ni(s) (A3.12)
i= s+s (A.+jj) + p j.

where GN(s) =1

Unlike the hardware system discussed in the previous

Section, the results for M (t) and A s(t) cannot be obtained

in a closed form, but can be derived from Equations (A3.11)

and (A3.12) by using Lemmas A2.1, A2.2, and A2.3 as follows.

First we obtain the inverse Laplace-Stieltjes trans-

form for Equation (A3.10). We write

N X
G (~~) 1 s + x 1 ) (s+T x2 .

Let x 1  ~ x1,x~ 1  xx~ 3  2 ~

e.O, x 2, XK. where K. (N-i) x 2,

N1

1 j=i+l

as given in Equation (A2.33)

By Lemmas A2.l-A2.3

skkx -x.t
*G G (t) ki+l (e____

N K. -x.

j~l l (x. + x)

N K' (e t

. TI (-x. + x)
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4I

Similarly, we get

- N x .(s + Ii. N (p .i)

s(s+ x )T (S + .) S + x
il 1i 2, 1+1 +,

N ~ x.(s+Oi) Ni

il N
11 (s + xi k) (s + x2k)

k=i ,2

and N

N K. k. II pskk) -x.t
M (t)= F 1 1 k=j1+1 (e ~-1

s i=l j=l K -

S(-x. + x d

N
.. TI p Xk Pk) -x.t
1 ' k=i+l S(e

T' (-x. +x

or -~N N K.-~
x ii 1x. + Pi)(le~ 1

M (tM ~, 1 {
i1j1 K (A3.13)

*-x. i (-x. + x)

* * For the availability, taking the inverse L-S transform

of Equation (A3.12), we have
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N
A s (t) = X {GN (t) - GN (t)i=0 N,i N,i-i

Ki -xjt
X. - -1) (A3.14) .i 1 (-x. + x)

jjo

For given cs, C5 2, and cs3, the expected total cost
S, s2 s3

can be obtained from Equation (A3.9) by substituting for

M s(t) and A s(t) from Equations (A3.13) and (A3.14), respec-

tively.

Illustrative Examples

Now we numerically study the behavior of M (t),
S

Asav (t) and C s(t)/t as a function of the software repair

rate V, failure rate X, and the cost factors c, cs,
and c

s3 .

Let us consider a system with N = 10, i = 0.05,

and ps = 0.9. The values of Aav (t) and Ms(t) computed

from the formulae derived earlier in this section are given

in Table 3.3 for various values of j and t. From the

table we note that the average availability improves with

t as well as with i. The improvement with t is due to the

fact that, as more software errors are removed, the system
Sp w

fails less often. The improvement with repair rate is due

to shorter down time.

The expected number of failures increases with t and
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I.w

with i. As the system is used for longer time, more errors

surface resulting in more failures. Also, as v improves,

the system is up for longer periods of time resulting in -"

more software failures. Note that the asymptotic value of

M (t) is simply the ratio N/ps = 10/.9 = 11.1111. Plots

of A sav(t) for A = .01, .05, and .10 versus V are shown in

Figure 3.5. As one would expect, availability improves as

v goes up and also as X goes from 0.10 to 0.05 to 0.01.

The expected total cost per unit time C s(t)/t, is

given in Table A3.4 for X = 0.05, N = 10, ps = 0.9,

v varying from 0.01 to 4.00, t from 100 to 2000, and the

cost factors varying as follows: -

c sc c8
1__ c2 3

10 10 10

100 10 10 "

10 10 100

10 100 10

Two additional sets of plots of the cost values

. versus p, taken from the above tables, are shown in

Figures A3.6 and A3.7.
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TAFALE A3.3

AVEFAGE AVAILABILITY AND E:x.FECTEr NUMBER OF FAILURES

SOFTWAF:E SYSTEM

FAILURE PATE: 0.050

AVER:AGE: AVAILAB(IL..ITY

REPAlk T m E "
RATE O00.O 250.0 500.0 1000.0 2000.0

0.01 0.196539 0.215310 0.392714 0.674846 0.837280
0.02 0.322907 0.424598 0.675202 0.837280 0.918640

* 0.05 0,548578 0.740689 0.869824 0.934912 0,967456
0,10 0.722236 0.869873 0.934912 0.967456 0.983728

* . 0.20 0.849874 0,934920 0,967456 0.983728 0.991864
0.30 0.898108 0.956612 0.978304 0.989152 0.994576
0.50 0.938155 0.973966 0.986982 0.993491 0*996746
0,75 0.958565 0.982644 0.991322 0,995661 0,997830
1.00 0,968853 0.986983 0.993491 0.996746 0.998373
1.50 0.979190 0.991322 0.995661 0,997830 0.998915
2.00 0.984376 0.993491 0.996746 0.998373 0.999186
3.00 0.989574 0.995661 0.997830 0.998915 0.999458
4.00 0.992176 0.996746 0,998373 0,999186 0.999593

EXPECTED NUMPER OF SOFTWARE FAILURES

0.01 6,6245 10,1158 11.0700 11.1109 11,1111
0.02 8.6796 11.0015 11.1106 11.1111 11.1111
0.05 10*3617 11.1095 11,1111 11,1111 11,11110,10 10*8006 11,1109 11*1111 1191111 11,1111
020 10,9340 111110 111111 111111 11,1111 "
0,30 10,9650 11,1110 11,1111 1101111 11.1111

i) 050 10,9858 11,1110 1101111 11,1111 11*1111• :
S0,75 10,9949 11,1110 11,1111 1101111 11.1111.

1 00 10*9992 1141110 11 1111 11.1111 11*1111 ..-
!1,50 11,0034 11.1110 11,1111 11,1111 11.1111 • -
42,00 11*0054 1141111 11,1111 1101111 11*1111
"3.00 11,0073 11,1111 11,1111 11,1111 1191111" "
S4,00 11,0083 11,1111 11,1111 11,1111 11,1111...
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TABI E A3.4

EXPECTED TOTAL COST PER UIT TIME

SOFTWARE SYSTEM
FAILURE RATE: 0,050

CSl=10, CS2=10, AND CS3=10

REPAIR T I M E

RATE 100.0 250.0 500.0 1000.0 2000.0

0.01 8.7971 8.3515 6.3943 3.4626 1.7828
0.02 7.8389 6.3941 3.6702 1.9383 1.0692
0.05 6.0504 3.5375 2.0240 1.2620 0.8810
0.10 4.8577 2.7457 1.8731 1.4366 1.2183
0.20 4*5947 3.0952 2.5477 2.2738 2,1369
0.30 5.1154 3.8783 3*4392 3.2196 3.1098
0.50 6.7170 5.7048 5.3524 5.1762 5.0881
0.75 9,0138 8.1180 7*8090 7.6545 7,5773
1.00 11.4114 10.5746 10.2873 10.1437 10.0718
1.50 16#3084 15.5312 15.2656 15.1328 15.0664
2.00 21.2568 20.5095 20.2548 20.1274 20.0637
3.00 31.2050 30.4878 30.2439 30.1220 30.0610
4.00 41.1791 40.4770 40.2385 40.1192 40.0596

CSl=10, cs2tO AND CS3:10

0.01 14.7591 11.9932 8,3869 4.4626 2.2828
0.02 15.6505 10,3546 5,6701 2,9383 1.5692
0.05 15.3759 7.5369 4.0240 2.2620 1.3810
0.10 14.5783 6.7456 3.8731 2.4366 1.7183
0.20 14.4352 7.0952 4.5477 3.2738 2.6369
0"30 14.9839 7"8783 5"4392 4"2196 3"6098
0.50 16.6042 9"7048 7.3524 6"1762 5.5881
0.75 18.9093 12.1180 9.8090 8.6545 8.0773
1.00 21.3107 14.5746 12.2873 11.1437 10.5718
1.50 26.2115 19.5312 17.2656 16.1328 15.5664
2.00 31.1616 24.5095 22.2548 21.1274 20.5637

& 3.00 41.1116 34.4878 32.2439 31.1220 30.5610
* 4.00 51.0865 44.4770 42.2385 41.1192 40.5596
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TABLE A3.4
(CONTINUED)

EX'PECTED TOTAL COST PER U1IT TIME

SOFTWARE SYSTEM

FAILURE F:RATE: 0.050

cs=10, cS2=10, AND CS3=100

REPAIR T I m E

RATE 100.0 250.0 500.0 1000.0 2000.0

0.01 81.1085 78.9736 61.0500 32.7265 16.4276
0.02 68.7773 58.1803 32.9020 16.5832 8.3916
0.05 46.6783 26.8755 13.7398 7.1199 3.8100
0.10 29.8565 14.4571 7.7310 4.3655 2.6828
0.20 18.1060 8.9525 5.4766 3.7383 2.8692
0.30 14.2857 7.7833 5.3918 491959 3.5980
0.50 12.2831 8.0478 6.5240 5.7620 5,3810
0,75 12,7429 9.6800 8,5901 8,0450 7.7725
1.00 14.2146 11.7461 10.8731 10.4366 10.2183
1.50 18.1813 16.3122 15.6561 15.3281 15.1640
2.00 22.6629 21,0953 20.5477 20.2738 20.1369
3.00 32,1434 30.8783 30.4392 30.2196 30.1098
4.00 41.8832 40.7699 40.3849 40.1925 40.0962

cSl=lO, cs2=100, AND cs3=10 '

0.01 9.6971 9,2515 7.2943 4.3626 2.6828
0.02 9,6389 8.1941 5.4702 3*7383 2.8692
0.05 10.5504 8.0375 6.5240 5.7620 5.3810
0.10 13.8577 11.7457 10.8731 10.4366 10.2183
0.20 22.5947 21,0952 20,5477 20.2738 20.1369
0.30 32,1154 30.8783 30.4392 30.2196 30,1098 -

0.50 51.7170 50.7048 50.3524 50.1762 50.0881
0.75 76.5138 75.6180 75.3090 75.1545 75.0773
1.00 101.4114 100.5746 100.2873 100.1437 100.0718
1.50 151.3084 150.5312 150.2656 150.1328 150.0664
2.00 201.2568 200,5095 200.2548 200.1274 200.0637 t V
3.00 301.2050 300.4878 300.2439 300.1220 300.0610
4.00 401.1791 400.4770 400.2385 400.1192 400.0596
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Figure A3.6 shows how the average cost changes with uj for

the four sets of cost factors.* The minimum for theme plots

occurs at different values of Ua due to changes in the cost

factors. In Figure A3.7, the average costs are shown for

various time horizons. We note that all the curves follow

a similar pattern, i.e., first decreasing with ijand then

increasing.
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Figure A3.5. Average Availability vs. Repair Rate for Different
Failure Rates (t =500).
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Figure A3.6. Expected Total Cost/Unit Time vs. Repair Rate for
Different Cost Factors (X = .05, t = 500).
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A3.3 Operational Cost Model: Hardware-Software System

We consider a hardware-software system whose behavior

is the same as the system discussed in Section 42 .1. Having

discussed the cost models for hardware only and software

only systems in the previous Sections, the operational

cost of the hardware-software system is basically the sum

of both the operational costs. However, the performance

measures required in the hardware-software system are not

obviously equal to their respective sums.

The cost elements associated with the operation of

this system are ch ch2, and c as defined in Section
2 2

A3.1,and c, c2, and cs3, as defined in Section A3. 2 .

The performance measures required for the cost model

are: Mh(t) and Ms(t), the expected number of hardware

and software failures by time t, respectively, and the

expected total down time during (0,t).
V

Let C(t) be the expected total operational cost associ-

ated with the hardware-software system and let c C c

Then

C(t) = chMh(t) + c.Ms(t) + ch yt + cs.t
1 12 2

t

+ c3  (1 A(x))dx, (A3.15)

0

o6
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where the expressions for m.h(t), Ms(t), and A(.) are

given in Equations (A2.49), (A2.54), and (A2.43), respec-

tively.

V
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Illustrative Examples

Now we numerically study the behavior of Mh(t), Ms(t),

C(t)/t and A (t) as a function of y and U. The values
av

of A(x), A av(t), M s(t) and Mh(t) are computed from Equa-

tions (A2.43), (A2.44), (A2.45), and (A2.49), respectively.

The values of C(t) are given by Equation (A3.15).

Let us consider a system with N = 10, Ps = .9, p h = 9,

= .01, and X = .05. For t = 100, y = .02 to 1.0 .

and ii = 0.01 to 0.50, the values of Aav (t), M(t) and

Mh(t) are given in Table A3.5. We note that the average

availability improves with both the hardware and the soft-

ware repair rates. Also, the expected number of failures

increases with increase in y and V. This is because of

the increased amount of time that the system is up leading r w

to a longer time available for the failures to occur.

Note that for these data sets all software errors have been

removed by approximately t = 500. As pointed out earlier,

after this happens, the system behaves as a hardware only

system. To see how C(t)/t behaves as a function of y and

6, let us suppose that c =10, c = 10, c = 10, c -s I  ChI  s 2  Ch
2 2

10, cs = ch = 10, and t = 100 to 2000 as shown in Table
3 3

A3.9. As can be easily seen, the cost varies with both y

and ji. As an example, for t = 500, I = 0.10, C(t)/t

goes from 5.97 to 12.23 as y goes from 0.02 to 1.00. The
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minimum seems to occur around y = 0.10. Similarly, for

y = 0.10, t = 500, C (t) goes from 9.07 to 7.63 as i goes

from 0.01 to 0.50 with the minimum occurring at around

= 0.10. A similar behavior is seen for other t values.
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TAVLE A3.9

EXPECTED TOTAL COST PER UNIT TIME

HARDWARE-SOFTWARE SYSTEM

CSl=10p CH1=10, CS2=10, CH2=10, CS3=CH3=10

t o100

SOFTWARE

REPAIR HARDWARE REPAIR RATE

RATE 0.02 0.05 0.10 0.20 0.50 1.00

0.01 9.13 9.40 9.87 10.86 13.85 1884
0.05 7.07 7.11 7.42 8.29 11.20 16.16
0.10 6.42 6.27 6.46 7.24 10.08 15.02 -.

0.25 6.94 6.59 6.65 7.33 10.10 15.01
0.50 9.07 8.64 8.64 9.28 12.03 16.93

t = 500

0.01 9.14 8.88 9.07 9.88 12.75 17,70
0.05 5.97 4.68 4.39 4.92 7.60 12.49
0.10 5.97 4.55 4.19 4.68 7.34 12.23
0,25 7.17 5.67 5,27 5,74 8.39 13.27
0,50 9.57 8.04 7.63 8.09 10,74 15.61

t = 1000

0.01 9.31 7.88 7.54 8.05 10,72 15.60
0.05 7.06 4.90 4.22 4.53 7.07 11.91
0.10 7.22 4.98 4.26 4.54 7.07 11.90
0.25 8.52 6.22 5.48 5.74 8.26 13.09 .0.
0.50 10.96 8*64 7*88 8.15 10.66 15.49

t = 2000

0.01 8.61 6.37 5.66 5.96 8.50 13.34
0.05 7.51 4.86 3.96 4.15 6.62 11.43
0.10 7.82 5.12 4.20 4.37 6.83 11.64
0.25 9.21 6.48 5.54 5.71 8.16 12.97
0.50 11.67 8,93 7.99 8.15 10.60 15.41
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Figure A3.8. Contours of Average Availability vs.
Repair Rates: Hardware-Software System

(8=.01, X =.05, t =500).
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*Figure A3.10. Contours of Expected Total Cost/Unit Time vs.
Repair Rates: Hardware-Software System (a =.01,
X= .05, t =500, cost factors =10).
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